In this paper, we explore how a rotary-wing unmanned aerial vehicle (UAV) acts as an aerial millimeter wave (mmWave) base station to provide recharging service and radio access service in a postdisaster area with unknown user distribution. The addressed optimization problem is to find out the optimal path starting and ending at the same recharging point to cover a wider area under limited battery capacity, and it can be transformed to an extended multiarmed bandit (MAB) problem. We propose the two improved path planning algorithms to solve this optimization problem, which can improve the ability to explore the unknown user distribution. Simulation results show that, in terms of the total number of served user equipment (UE), the number of visited grids, the amount of data, the average throughput, and the battery capacity utilization level, one of our algorithms is superior to its corresponding comparison algorithm, while our other algorithm is superior to its corresponding comparison algorithm in terms of the number of visited grids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.