RepeatMasker is a popular software tool widely used in computational genomics to identify, classify, and mask repetitive elements, including low-complexity sequences and interspersed repeats. RepeatMasker searches for repetitive sequence by aligning the input genome sequence against a library of known repeats, such as Repbase. Here, we describe two Basic Protocols that provide detailed guidelines on how to use RepeatMasker, either via the Web interface or command-line Unix/Linux system, to analyze repetitive elements in genomic sequences. Sequence comparisons in RepeatMasker are usually performed by the alignment program cross match, which requires significant processing time for larger sequences. An Alternate Protocol describes how to reduce the processing time using an alternative alignment program, such as WU-BLAST. Further, the advantages, limitations, and known bugs of the software are discussed. Finally, guidelines for understanding the results are provided. Curr. Protoc. Bioinform.
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.
Eight proteins, defects in which are associated with Meckel-Gruber syndrome and nephronophthisis ciliopathies, work together as two functional modules at the transition zone to establish basal body/transition zone connections with the membrane and barricade entry of non-ciliary components into this organelle.
Comparative analysis of the sea urchin genome has broad implications for the primitive state of deuterostome host defense and the genetic underpinnings of immunity in vertebrates. The sea urchin has an unprecedented complexity of innate immune recognition receptors relative to other animal species yet characterized. These receptor genes include a vast repertoire of 222 Toll-like receptors, a superfamily of more than 200 NACHT domain-leucine-rich repeat proteins (similar to nucleotide-binding and oligomerization domain (NOD) and NALP proteins of vertebrates), and a large family of scavenger receptor cysteine-rich proteins. More typical numbers of genes encode other immune recognition factors. Homologs of important immune and hematopoietic regulators, many of which have previously been identified only from chordates, as well as genes that are critical in adaptive immunity of jawed vertebrates, also are present. The findings serve to underscore the dynamic utilization of receptors and the complexity of immune recognition that may be basal for deuterostomes and predicts features of the ancestral bilaterian form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.