The primary objective of this paper is to develop yield and price forecasting models employed in informed crop decision planning-a key aspect of effective farm management. For yearly yield prediction, we introduce a weather-based regression model with time-dependent varying coefficients. In order to allow for within-year climate variations, we predict yearly crop yield using weekly temperature and rainfall summaries resulting in a large number of correlated predictors. To overcome this difficulty, we reduce the space of predictors to a small number of uncorrelated predictors using Functional Principal Component Analysis (FPCA). For detailed price forecasting, we develop a futures-based model for long-range cash price prediction. In this model, the cash price is predicted as a sum of the nearby settlement futures price and the predicted commodity basis. We predict the one-year commodity basis as a mixture of historical basis data using a functional model-based approach. In both forecasting models, we estimate approximate prediction confidence intervals that are further integrated in a decision planning model. We applied our methods to corn yield and price forecasting for Hancock County in Illinois. Our forecasting results are more accurate in comparison to predictions based on existing methods. The methods introduced in this paper generally apply to other locations in the US and other crop types. The supplemental materials for this article are available online.
This paper proposes a linear mixed model (LMM) with spatial effects, trend, seasonality and outliers for spatio-temporal time series data. A linear trend, dummy variables for seasonality, a binary method for outliers and a multivariate conditional autoregressive (MCAR) model for spatial effects are adopted. A Bayesian method using Gibbs sampling in Markov Chain Monte Carlo is used for parameter estimation. The proposed model is applied to forecast rice and cassava yields, a spatio-temporal data type, in Thailand. The data have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The proposed model is compared with our previous model, an LMM with MCAR, and a log transformed LMM with MCAR. We found that the proposed model is the most appropriate, using the mean absolute error criterion. It fits the data very well in both the fitting part and the validation part for both rice and cassava. Therefore, it is recommended to be a primary model for forecasting these types of spatio-temporal time series data.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.