Background Major depressive disorder (MDD) is a common mental illness characterized by persistent sadness and a loss of interest in activities. Using smartphones and wearable devices to monitor the mental condition of patients with MDD has been examined in several studies. However, few studies have used passively collected data to monitor mood changes over time. Objective The aim of this study is to examine the feasibility of monitoring mood status and stability of patients with MDD using machine learning models trained by passively collected data, including phone use data, sleep data, and step count data. Methods We constructed 950 data samples representing time spans during three consecutive Patient Health Questionnaire-9 assessments. Each data sample was labeled as Steady or Mood Swing, with subgroups Steady-remission, Steady-depressed, Mood Swing-drastic, and Mood Swing-moderate based on patients’ Patient Health Questionnaire-9 scores from three visits. A total of 252 features were extracted, and 4 feature selection models were applied; 6 different combinations of types of data were experimented with using 6 different machine learning models. Results A total of 334 participants with MDD were enrolled in this study. The highest average accuracy of classification between Steady and Mood Swing was 76.67% (SD 8.47%) and that of recall was 90.44% (SD 6.93%), with features from all types of data being used. Among the 6 combinations of types of data we experimented with, the overall best combination was using call logs, sleep data, step count data, and heart rate data. The accuracies of predicting between Steady-remission and Mood Swing-drastic, Steady-remission and Mood Swing-moderate, and Steady-depressed and Mood Swing-drastic were over 80%, and the accuracy of predicting between Steady-depressed and Mood Swing-moderate and the overall Steady to Mood Swing classification accuracy were over 75%. Comparing all 6 aforementioned combinations, we found that the overall prediction accuracies between Steady-remission and Mood Swing (drastic and moderate) are better than those between Steady-depressed and Mood Swing (drastic and moderate). Conclusions Our proposed method could be used to monitor mood changes in patients with MDD with promising accuracy by using passively collected data, which can be used as a reference by doctors for adjusting treatment plans or for warning patients and their guardians of a relapse. Trial Registration Chinese Clinical Trial Registry ChiCTR1900021461; http://www.chictr.org.cn/showprojen.aspx?proj=36173
IntroductionDepression is an affective disorder that contributes to a significant global burden of disease. Measurement-Based Care (MBC) is advocated during the full course management, with symptom assessment being an important component. Rating scales are widely used as convenient and powerful assessment tool, but they are influenced by the subjectivity and consistency of the raters. The assessment of depressive symptoms is usually conducted with a clear purpose and restricted content, such as clinical interviews based on the Hamilton Depression Rating Scale (HAMD), so that the results are easy to obtain and quantify. Artificial Intelligence (AI) techniques are used due to their objective, stable and consistent performance, and are suitable for assessing depressive symptoms. Therefore, this study applied Deep Learning (DL)-based Natural Language Processing (NLP) techniques to assess depressive symptoms during clinical interviews; thus, we proposed an algorithm model, explored the feasibility of the techniques, and evaluated their performance.MethodsThe study included 329 patients with Major Depressive Episode. Clinical interviews based on the HAMD-17 were conducted by trained psychiatrists, whose speech was simultaneously recorded. A total of 387 audio recordings were included in the final analysis. A deeply time-series semantics model for the assessment of depressive symptoms based on multi-granularity and multi-task joint training (MGMT) is proposed.ResultsThe performance of MGMT is acceptable for assessing depressive symptoms with an F1 score (a metric of model performance, the harmonic mean of precision and recall) of 0.719 in classifying the four-level severity of depression and an F1 score of 0.890 in identifying the presence of depressive symptoms.DisscussionThis study demonstrates the feasibility of the DL and the NLP techniques applied to the clinical interview and the assessment of depressive symptoms. However, there are limitations to this study, including the lack of adequate samples, and the fact that using speech content alone to assess depressive symptoms loses the information gained through observation. A multi-dimensional model combing semantics with speech voice, facial expression, and other valuable information, as well as taking into account personalized information, is a possible direction in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.