DNA double-strand breaks can seriously damage the genetic information that organisms depend on for survival and reproduction. Therefore, cells require a robust DNA damage response mechanism to repair the damaged DNA. Homologous recombination (HR) allows error-free repair, which is key to maintaining genomic integrity. Long non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides.In recent years, a number of studies have found that lncRNAs can act as regulators of gene expression and DNA damage response mechanisms, including HR repair. Moreover, they have significant effects on the occurrence, development, invasion and metastasis of tumor cells, as well as the sensitivity of tumors to radiotherapy and chemotherapy. These studies have therefore begun to expose the great potential of lncRNAs for clinical applications. In this review, we focus on the regulatory roles of lncRNAs in HR repair.
Background Radiotherapy is an important treatment for lung cancer, mainly by triggering DNA double-strand breaks to induce cell death. Blocking DNA damage repair can increase the radiosensitivity of tumor cells. Recent studies have identified long noncoding RNAs as key regulators in DNA damage repair. The lncRNA ANRIL was previously shown to be involved in homologous recombination (HR) repair, but its specific mechanism has not been fully elucidated. Methods The downstream interacting miRNAs of ANRIL were predicted according to miRanda software. Fluorescence quantitative PCR was used to detect the expression levels of ANRIL and candidate miRNAs. Clone formation experiment and cell viability assays detect cell viability after ionizing radiation. Apoptosis assay was used to detect the apoptosis of cells after 8 h of ionizing radiation. Western blot analysis and immunofluorescence assays verified the protein expression levels of the downstream target molecule PARP1 of miR-7-5p and key molecules in the HR pathway. Fluorescent reporter gene experiments were used to verify the interaction between ANRIL and miR-7-5p and between miR-7-5p and PARP1. Results Bioinformatics analysis and qPCR validation suggested that miR-7-5p might be a downstream molecule of ANRIL. The expression of miR-7-5p was up-regulated after knockdown of ANRIL, and the expression of miR-7-5p was down-regulated after overexpression of ANRIL. Meanwhile, there was a negative correlation between ANRIL and miR-7-5p expression changes before and after ionizing radiation. The luciferase reporter gene assay confirmed the existence of ANRIL binding site with miR-7-5p, and found that transfection of miR-7-5p inhibitor can reduce the radiation sensitivity of ANRIL-KD cells. A downstream target molecule of miR-7-5p related to HR repair, PARP1, was screened through website prediction. Subsequently, it was confirmed by Western blot and luciferase reporter assays that miR-7-5p could down-regulate the expression of PARP1, and there was a miR-7-5p binding site on the 3'UTR of PARP1 mRNA. This suggests that ANRIL may act as a competitive endogenous RNA to bind miR-7-5p and upregulate the expression of PARP1. Western blot and immunofluorescence staining were used to detect the expression changes of HR repair factors in ANRIL-KD cells after ionizing radiation, and it was found that knockdown of ANRIL can inhibit the expression of PARP1, BRCA1 and Rad51, hinder radiation-induced HR repair, and eventually result in resensitizing ANRIL-KD cells to ionizing radiation. Conclusions Our findings provide evidence that ANRIL targets the miR-7-5p/PARP1 axis to exert its regulatory effect on HR repair, suggesting that altering ANRIL expression may be a promising strategy to overcome radiation resistance.
Many current microRNA (miRNA) expression datasets for renal cell carcinoma (RCC) often show inconsistent analysis results, so a shift to comprehensive analysis of multiple datasets can effectively accelerate molecular screening for precision medicine and translational medicine research. MicroRNA (miR)-188-5p is a clinically noteworthy
BackgroundDNA‐damaging agents, including radiation and platinum‐based chemotherapy, are indispensable treatments for non‐small cell lung cancer (NSCLC) patients. However, cancer cells tend to be resistant to both radiation and chemotherapy, thus resulting in treatment failure or recurrence. The purpose of this study was to explore the effect and mechanism of long non‐coding RNA (lncRNA) PANDAR (promoter of CDKN1A antisense DNA damage‐activated RNA) on NSCLC sensitivity to radiation and chemotherapy.MethodsCell counting kit (CCK‐8), colony formation and flow cytometry were respectively performed to determine the cell cycle and apoptosis of NSCLC cells treated with γ‐ray radiation and cisplatin. The extent of DNA damage was evaluated using a comet assay and immunofluorescence staining against γH2AX. In addition, we explored the role of PANDAR in DNA damage response pathways through western blot analysis. Finally, a nude mouse subcutaneous xenograft model was established to assess the sensitivity to radiation and chemotherapy in vivo.ResultsIn cell experiments, PANDAR knockdown can increase the sensitivity of NSCLC cells to radiation and cisplatin. The CCK‐8 results showed that cell viability was significantly increased in the overexpression group after radiation and cisplatin treatments. The overexpression group also showed more colonies, less apoptosis and DNA damage, and G2/M phase arrest was aggravated to provide the time necessary for DNA repair. Contrary to PANDAR overexpression, the trends were reversed in the PANDAR knockdown group. Furthermore, PANDAR knockdown inhibited radiation and cisplatin‐activated phosphorylation levels of ATR and CHK1 in NSCLC cells. Finally, our in vivo model showed that targeting PANDAR significantly sensitized NSCLC to radiation and cisplatin.ConclusionOur study showed that PANDAR knockdown promoted sensitivity to radiation and cisplatin in NSCLC by regulating the ATR/CHK1 pathway, thus providing a novel understanding as well as a therapeutic target for NSCLC treatment.In NSCLC cells, lncRNA PANDAR negatively regulates sensitivity to radiation and cisplatin. PANDAR can promote the repair of radiation and cisplatin‐induced DNA damage and activation of the G2/M checkpoint through the ATR/CHK1 pathway. PANDAR knockdown results in defects in DNA damage repair accompanied by more cell apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.