Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.
Meningioma is the most frequently occurring type of brain tumor. The present study aimed to conduct a comprehensive bioinformatics analysis of key genes and relevant pathways involved in meningioma, and acquire further insight into the underlying molecular mechanisms. Initially, differentially expressed genes (DEGs) in 47 meningioma samples as compared with 4 normal meninges were identified. Subsequently, these DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. In addition, a protein-protein interaction (PPI) network of the identified DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes and visualized using Cytoscape. In total, 1,683 DEGs were identified, including 66 upregulated and 1,617 downregulated genes. The GO analysis results revealed that the DEGs were significantly associated with the ‘protein binding’, ‘cytoplasm’, ‘extracellular matrix (ECM) organization’ and ‘cell adhesion’ terms. The KEGG analysis results demonstrated the significant pathways included ‘AGE-RAGE signaling pathway in diabetic complications’, ‘PI3K-Akt signaling pathway’, ‘ECM-receptor interaction’ and ‘cell adhesion molecules’. The top five hub genes obtained from the PPI network were JUN, PIK3R1, FOS, AGT and MYC, and the most enriched KEGG pathways associated with the four obtained modules were ‘chemokine signaling pathway’, ‘cytokine-cytokine receptor interaction’, ‘allograft rejection’, and ‘complement and coagulation cascades’. In conclusion, bioinformatics analysis identified a number of potential biomarkers and relevant pathways that may represent key mechanisms involved in the development and progression of meningioma. However, these findings require verification in future experimental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.