Janus-type triskelion-shaped fluorophores comprising coumarins bearing various electron-donating substituents (1aad, 1add, 1ccd, and 1cdd) were successfully synthesized via an intramolecular Ullmann coupling. Density functional theory (DFT) calculations indicated that all the compounds presented two different molecular surfaces, similar to Janus-type molecules. The absorption and fluorescence spectra of asymmetrical derivatives 1aad, 1add, 1ccd, and 1cdd exhibited a bathochromic shift due to their narrow highest occupied molecular orbital (HOMO) –lowest unoccupied molecular orbital (LUMO) gap. Natural transition orbital (NTO) analysis indicated that the excited state orbital overlaps differ among the C3 symmetrical and asymmetrical dyes. These triskelion-shaped fluorophores were found to form molecular nanoaggregates in THF/H2O mixtures and demonstrated aggregation-induced emission (AIE) enhancement characteristics as a result of restricting their molecular inversion. These results indicate that Janus-type AIE fluorophores are potentially applicable as solid-state fluorescent chiral materials, which can be optimized by controlling their molecular rearrangement in the solid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.