Tissue-resident memory T cells (TRMs) are a novel nonvascular memory T cell subset. Although CD8 + TRMs are well-characterized, CD4 + TRMs-especially lung-resident memory Th17 cells-are still being defined. In this study, we characterized lung-resident memory Th17 cells (lung TRM17) and their role in protection against the highly virulent fungus Cryptococcus gattii. We found that intravenously transferred DCs preferentially migrated to lungs and attracted recipient DCs and led to the induction of long-lived Th17 cells expressing characteristic markers. This population could be clearly discriminated from circulating T cells by intravascular staining and was not depleted by the immunosuppressive agent FTY720. The C. gattii antigen re-stimulation assay revealed that vaccine-induced lung Th17 cells produced IL-17A but not IFNγ. The DC vaccine significantly increased IL-17A production and suppressed fungal burden in the lungs and improved the survival of mice infected with C. gattii. This protective effect was significantly reduced in the IL-17A knockout (KO) mice, but not in the FTY720-treated mice. The protective effect also coincided with the activation of neutrophils and multinucleated giant cells, and these inflammatory responses were suppressed in the vaccinated IL-17A KO mice. Overall, these data demonstrated that the systemic DC vaccine induced lung TRM17, which played a substantial role in anti-fungal immunity.Mucosal Immunology (2019) 12:265-276; https://doi.
Cryptococcus gattii is a capsular fungal pathogen, which causes life-threatening cryptococcosis in immunocompetent individuals. This emerging pathogen is less likely to be recognized by innate immunity compared to traditional Cryptococcus neoformans strains. Previous studies indicate that C-type lectin receptors (CLRs), including dectin-1 and dectin-2, play a role in recognizing cryptococcal cells; however, it remains to be elucidated whether the receptors physically associate with C . gattii yeast cell surfaces. Based on the previous findings, we hypothesized that culture conditions influence the expression or exposure of CLR ligands on C . gattii . Therefore, in the present study, we first investigated the culture conditions that induce exposure of CLR ligands on C . gattii yeast cells via the binding assay using recombinant fusion proteins of mouse CLR and IgG Fc, Fc dectin-1 and Fc dectin-2. Common fungal culture media, such as yeast extract–peptone–dextrose (YPD) broth, Sabouraud broth, and potato dextrose agar, did not induce the exposure of dectin-1 ligands, including β-1,3-glucan, on both capsular and acapsular C . gattii strains, in contrast to Fc dectin-1 and Fc dectin-2 bound to C . gattii cells growing in the conventional synthetic dextrose (SD) medium [may also be referred to as a yeast nitrogen base with glucose medium]. The medium also induced the exposure of dectin-1 ligands on C . neoformans , whereas all tested media induced dectin-1 and dectin-2 ligands in a control fungus Candida albicans . Notably, C . gattii did not expose dectin-1 ligands in SD medium supplemented with yeast extract or neutral buffer. In addition, compared to YPD medium-induced C . gattii , SD medium-induced C . gattii more efficiently induced the phosphorylation of Syk, Akt, and Erk1/2 in murine dendritic cells (DCs). Afterwards, the cells were considerably engulfed by DCs and remarkably induced DCs to secrete the inflammatory cytokines. Overall, the findings suggest that C . gattii alters its immunostimulatory potential in response to the environment.
Cryptococcosis is a potentially lethal disease caused by fungal pathogens including Cryptococcus neoformans and Cryptococcus gattii species complex. These fungal pathogens live in the environment and are associated with certain tree species and bird droppings. This infectious disease is not contagious, and healthy individuals may contract cryptococcal infections by inhaling the airborne pathogens from the environment. Although cleaning a contaminated environment is a feasible approach to control environmental fungal pathogens, prophylactic immunization is also considered a promising method to regulate cryptococcal infections. We review the history of the development of cryptococcal vaccines, vaccine components, and the various forms of immune memory induced by cryptococcal vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.