It is well known that radiotherapy causes malfunctions of cardiac implantable electronic
devices such as pacemaker (PM) and implantable cardioverter-defibrillator because of
incidental neutron production. Here, we report our experience with two cases of PM reset
among seven patients with PM who underwent proton beam therapy (PBT) from January 2011 to
April 2015 at our centre. Our experience shows PM reset can occur also with abdominal PBT.
In both cases, PM reset was not detected by electrocardiogram (ECG) monitoring but was
rather discovered by post-treatment programmer analysis. Our cases suggest that PM
malfunction may not always be detected by ECG monitoring and emphasize the importance of
daily programmer analysis.
The role of proton beam therapy (PBT) as monotherapy for localized prostate cancer (PCa) remains unclear. The purpose of this study was to evaluate the efficacy and adverse events of PBT alone for these patients. Between January 2011 and July 2014, 218 patients with intermediate- and high-risk PCa who declined androgen deprivation therapy (ADT) were enrolled to the study and were treated with PBT following one of the following protocols: 74 Gray (GyE) with 37 fractions (fr) (74 GyE/37 fr), 78 GyE/39 fr, and 70 GyE/28 fr. The 5-year progression-free survival rate in the intermediate- and high-risk groups was 97% and 83%, respectively (p = 0.002). The rate of grade 2 or higher late gastrointestinal toxicity was 3.9%, and a significant increased incidence was noted in those who received the 78 GyE/39 fr protocol (p < 0.05). Grade 2 or higher acute and late genitourinary toxicities were observed in 23.5% and 3.4% of patients, respectively. Our results indicated that PBT monotherapy can be a beneficial treatment for localized PCa. Furthermore, it can preserve the quality of life of these patients. We believe that this study provides crucial hypotheses for further study and for establishing new treatment strategies.
The thermal stability of two homologous proteins, lysozyme and α-lactalbumin, was examined by circular dichroism. The present study clearly showed two different aspects between the homologous proteins: (1) the original helices of lysozyme and α-lactalbumin were unchanged at heat treatments up to 60 and 40 °C, respectively, indicating a higher thermal stability of lysozyme, and (2) upon cooling to 25 °C, the original helices of lysozyme were never reformed after they were once disrupted, while those of α-lactalbumin, disrupted at a particular temperature range between 40 and 60 °C, were completely reformed. In addition, the structural changes were also examined in the coexistence of sodium dodecyl sulfate (SDS), which induced the formation of helical structures in these proteins at 25 °C. A distinct difference appeared in the thermal stabilities of the SDS-induced helices. All of the SDS-induced helices of lysozyme were disrupted below 60 °C, while those of α-lactalbumin at 10 mM SDS were unchanged up to 130 °C. A similarity was also fixed. Not only the SDS-induced helices but also the original helices of the two proteins were reformed upon cooling to 25 °C after the thermal denaturation below 100 °C in the coexistence of 10 mM SDS.
We demonstrated that the HyBIS can help retain the protruded breast shape in the supine position during treatment and can reduce the influence of respiratory movement. Thus, the HyBIS can help to reliably and precisely perform PBT for EBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.