This is the first report of navigation surgery using Vnav-PET/CT, which may assist minimally invasive procedures, especially in the axilla.
Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor ‘TCL1b-Akt-in' inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities—in turn, ‘TCL1b-Akt-in' inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human neoplastic diseases.
Abstract. Macrophages demonstrate plasticity, and tumorassociated macrophages (TAM) can function as immunosuppressive cells in the tumor microenvironment. Therefore, in this study, we aimed to reprogram TAM in vitro with cytokine signal alteration. Granulocyte macrophage colony stimulating factor (GM-CSF) treatment alone did not lead to changes in the expression of M1 (including IL-1β, TNFα and CXCL-10) or M2 (including CD36, CD206 and CCL17) molecules by TAM in vitro, although they adopted a round morphology and were less adhesive to the culture dish. When macrophage colony stimulating factor (M-CSF) signals were suppressed by siRNA against the M-CSF receptor (M-CSFR) in conjunction with GM-CSF treatment, the signal transduction pathway of TAM was altered, and the expression of STAT1, STAT5 and STAT6, which are usually expressed by dendritic cells, was increased. However, the same treatment did not alter the TAM expression pattern of M1/M2 marker molecules. With respect to the NF-κB pathway, GM-CSF and M-CSFR siRNA combination treatment significantly induced the expression of p65, which is usually not expressed by TAM, while p50 and p105 expression by TAM was not affected by the treatment. These findings indicate that our model could not redirect TAM to a monocyte-derived dendritic cell-like phenotype based on the analysis of M1/M2 marker expression, but it was able to modify cell signaling pathways toward a dendritic cell-like pattern. Therefore, the present data suggest that TAM demonstrate plasticity toward dendritic cell-like signal transduction patterns, and that the alteration of the tumor microenvironment has the potential to reverse the immunosuppressive properties of TAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.