Toll-like receptor (TLR)-mediated recognition of pathogens represents one of the most important mechanisms of innate immunity. A proximal signaling event of TLR is the direct binding of an adaptor protein MyD88 to TLR and recruitment of the IL-1R-associated kinase (IRAK). In the present study, we examined the effect of several TLR ligands on protein tyrosine phosphorylation in rat macrophages. Macrophage-activating lipopeptide-2 kDa (MALP2) and lipoarabinomannan were used as activators of TLR2, while lipopolysaccharides (LPS) and lipoteichoic acid were used as TLR4 ligands. All these ligands induced tyrosine phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) and its substrate paxillin, an integrin-associated focal adhesion adaptor protein, in the macrophages. PP2, an inhibitor of Src family tyrosine kinases, prevented the TLR-induced phosphorylation of paxillin and Pyk2 without affecting TLR-induced IRAK activation. MALP2 failed to induce paxillin phosphorylation in the macrophages from MyD88-knockout mice. In contrast, the effect of LPS weakened, but was still observed even in the MyD88-deficient cells. Thus, TLR regulate the function of paxillin in an Src family-dependent mechanism through both MyD88-dependent and MyD88-independent pathways.
Toll-like receptor (TLR) family members recognize specific molecular patterns within pathogens. Signaling through TLRs results in a proximal event that involves direct binding of adaptor proteins to the receptors. We observed that TIRAP/Mal, an adaptor protein for TLR2 and TLR4, binds protein kinase Cdelta (PKCdelta). TIRAP/Mal GST-fusion protein and a TIRAP/Mal antibody were able to precipitate PKCdelta from rat peritoneal macrophage and THP1 cell lysates. Truncation mutants of TIRAP/Mal showed that the TIR domain of TIRAP/Mal is responsible for binding. TLR2- and TLR4-mediated phosphorylation of p38 MAPK, IKK, and IkappaB in RAW264.7 cells were abolished by depletion of PKCdelta. These results suggest that PKCdelta binding to TIRAP/Mal promotes TLR signaling events.
Abstract. Lagerstroemin, an ellagitannin isolated from the leaves of Lagerstroemia speciosa (L.) Pers. (Lythraceae), was examined for its biological activities. In rat adipocytes, the compound increased the rate of glucose uptake and decreased the isoproterenol-induced glycerol release. In Chinese hamster ovary cells expressing human insulin receptors, it increased the Erk activity. These insulin-like actions were accompanied by the increased tyrosine-phosphorylation of the b-subunit of the insulin receptors. Tryptic digestion of the extracellular sites of the insulin receptors markedly increased the effective concentrations of insulin without changing those of lagerstroemin. Thus lagerstroemin was considered to cause its insulin-like actions by a mechanism different from that employed by insulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.