Clearance of atorvastatin occurs through hepatic uptake by organic anion transporting polypeptides (OATPs) and subsequent metabolism by cytochrome P450 (CYP) 3A4. To demonstrate the relative importance of OATPs and CYP3A4 in the hepatic elimination of atorvastatin in vivo, a clinical cassette microdose study was performed. A cocktail consisting of a microdose of atorvastatin along with probe substrates for OATPs (pravastatin) and CYP3A4 (midazolam) was orally administered to eight healthy volunteers. The pharmacokinetics of this cocktail was observed at baseline, after an oral dose of 600 mg rifampicin (an inhibitor of OATPs), and after an intravenous dose of 200 mg itraconazole (a CYP3A4 inhibitor). Rifampicin increased the pravastatin dose-normalized area under the plasma concentration-time curve (AUC) (4.6-fold), and itraconazole significantly increased the midazolam dose-normalized AUC (1.7-fold). The atorvastatin dose-normalized AUC increased 12-fold when coadministered with rifampicin but did not change when coadministered with itraconazole. These results indicate that hepatic uptake via OATPs makes the dominant contribution to the hepatic elimination of atorvastatin at a subtherapeutic microdose.
We investigated the mechanisms of ritonavir-mediated enhancement effect on the pharmacokinetics of saquinavir using in vivo probes for CYP3A4 (midazolam), p-glycoprotein (fexofenadine), and OATP1B1 (pravastatin) following oral micro/small dosing. A cocktail of the drugs (2 mg of saquinavir, 100 µg of each probe) was administered to eight healthy volunteers (phase 1), and then coadministered with 20 mg (phase 2) and 100 mg (phase 3) of ritonavir. Plasma concentrations of the drugs were measured by validated LC-MS/MS methods. The mean plasma AUC0-24 (pg hour/mL) of saquinavir at phases 1, 2, and 3 was 101, 2 540, and 23 900 (P < .01), respectively. The relative area under the plasma concentration-time curve (AUC)0-24 ratios of midazolam and fexofenadine at phases 1, 2, and 3 were 1:5.9:14.7 (P < .01), and 1:1.4:2.2 (P < .01-.05), respectively. In contrast, there was no difference in the pharmacokinetics of pravastatin. Inhibition of intestinal and hepatic CYP3A-mediated metabolism, and intestinal p-glycoprotein-mediated efflux of saquinavir, but not OATP1B1, is involved in the enhancement mechanism. Micro/small dosing is useful for examining the mechanism of drug interactions without safety concern.
A sample treatment procedure and high-sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for quantitative determination of nicardipine in human plasma were developed for a microdose clinical trial with nicardipine, a non-radioisotope labeled drug. The calibration curve was linear in the range of 1-500 pg/mL using 1 mL of plasma. Analytical method validation for the clinical dose, for which the calibration curve was linear in the range of 0.2-100 ng/mL using 20 microL of plasma, was also conducted. Each method was successfully applied to making determinations in plasma using LC/MS/MS after administration of a microdose (100 microg) and clinical dose (20 mg) to each of six healthy volunteers. We tested new approaches in the search for metabolites in plasma after microdosing. In vitro metabolites of nicardipine were characterized using linear ion trap-fourier transform ion cyclotron resonance mass spectrometry (LIT-FTICRMS) and the nine metabolites predicted to be in plasma were analyzed using LC/MS/MS. There is a strong possibility that analysis of metabolites by LC/MS/MS may advance to utilization in microdose clinical trials with non-radioisotope labeled drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.