While much of the current study on quantum computation employs low-level formalisms such as quantum circuits, several high-level languages/calculi have been recently proposed aiming at structured quantum programming. The current work contributes to the semantical study of such languages by providing interaction-based semantics of a functional quantum programming language; the latter is, much like Selinger and Valiron's, based on linear lambda calculus and equipped with features like the ! modality and recursion. The proposed denotational model is the first one that supports the full features of a quantum functional programming language; we prove adequacy of our semantics. The construction of our model is by a series of existing techniques taken from the semantics of classical computation as well as from process theory. The most notable among them is Girard's Geometry of Interaction (GoI), categorically formulated by Abramsky, Haghverdi and Scott. The mathematical genericity of these techniques-largely due to their categorical formulation-is exploited for our move from classical to quantum.
Girard's Geometry of Interaction (GoI) is interaction based semantics of linear logic proofs and, via suitable translations, of functional programs in general. Its mathematical cleanness identifies essential structures in computation; moreover its use as a compilation technique from programs to state machines-"GoI implementation," so to speak-has been worked out by Mackie, Ghica and others. In this paper, we develop Abramsky's idea of resumption based GoI systematically into a generic framework that accounts for computational effects (nondeterminism, probability, exception, global states, interactive I/O, etc.). The framework is categorical: Plotkin & Power's algebraic operations provide an interface to computational effects; the framework is built on the categorical axiomatization of GoI by Abramsky, Haghverdi and Scott; and, by use of the coalgebraic formalization of component calculus, we describe explicit construction of state machines as interpretations of functional programs. The resulting interpretation is shown to be sound with respect to equations between algebraic operations, as well as to Moggi's equations for the computational lambda calculus. We illustrate the construction by concrete examples.
Abstract. Geometry of Interaction (GoI) introduced by Girard provides a semantics for linear logic and its cut elimination. Several extensions of GoI to programming languages have been proposed, but it is not discussed to what extent they capture behaviour of programs as far as the author knows. In this paper, we study GoI interpretation of a linear functional programming language (LFP). We observe that we can not extend the standard GoI interpretation to an adequate interpretation of LFP, and we propose a new adequate GoI interpretation of LFP by modifying the standard GoI interpretation. We derive the modified interpretation from a realizability model of LFP. We also relate the interpretation of recursion to cyclic computation (the trace operator in the category of sets and partial maps) in the realizability model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.