BackgroundLeptospirosis is a worldwide bacterial zoonosis. Outbreaks of leptospirosis after heavy rainfall and flooding have been reported. However, few studies have formally quantified the effect of weather factors on leptospirosis incidence. We estimated the association between rainfall and leptospirosis cases in an urban setting in Manila, the Philippines, and examined the potential intermediate role of floods in this association.Methods/Principal findingsRelationships between rainfall and the weekly number of hospital admissions due to leptospirosis from 2001 to 2012 were analyzed using a distributed lag non-linear model in a quasi-Poisson regression framework, controlling for seasonally varying factors other than rainfall. The role of floods on the rainfall–leptospirosis relationship was examined using an indicator. We reported relative risks (RRs) by rainfall category based on the flood warning system in the country. The risk of post-rainfall leptospirosis peaked at a lag of 2 weeks (using 0 cm/week rainfall as the reference) with RRs of 1.30 (95% confidence interval: 0.99–1.70), 1.53 (1.12–2.09), 2.45 (1.80–3.33), 4.61 (3.30–6.43), and 13.77 (9.10–20.82) for light, moderate, heavy, intense and torrential rainfall (at 2, 5, 16, 32 and 63 cm/week), respectively. After adjusting for floods, RRs (at a lag of 2 weeks) decreased at higher rainfall levels suggesting that flood is on the causal pathway between rainfall and leptospirosis.ConclusionsRainfall was strongly associated with increased hospital admission for leptospirosis at a lag of 2 weeks, and this association was explained in part by floods.
Many studies have reported a relationship between climate factors and malaria. However, results were inconsistent across the areas. We examined associations between climate factors and malaria in two geographically different areas: lowland (lakeside area) and highland in Western Kenya. Associations between climate factors (rainfall, land surface temperature (LST), and lake water level (LWL)) and monthly malaria cases from 2000 to 2013 in six hospitals (two in lowland and four in highland) were analyzed using time-series regression analysis with a distributed lag nonlinear model (DLNM) and multivariate meta-analysis. We found positive rainfall–malaria overall associations in lowland with a peak at 120 mm of monthly rainfall with a relative risk (RR) of 7.32 (95% CI: 2.74, 19.56) (reference 0 mm), whereas similar associations were not found in highland. Positive associations were observed at lags of 2 to 4 months at rainfall around 100–200 mm in both lowland and highland. The RRs at 150 mm rainfall were 1.42 (95% CI: 1.18, 1.71) in lowland and 1.20 (95% CI: 1.07, 1.33) in highland (at a lag of 3 months). LST and LWL did not show significant association with malaria. The results suggest that geographical characteristics can influence climate–malaria relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.