The aim of this study was to investigate the effect of Er:YAG laser irradiation on human dentin surface using X-ray photoelectron spectroscopy (XPS). 10 human dentin disks were prepared from extracted human molars for XPS analysis. These specimens were divided into two groups of five: a control group and group that were irradiated by an Er:YAG laser beam (100 mJ, 1Hz). All specimens were analyzed by XPS over a wide scanning range and narrow scanning ranges. The Ca/P ratio was calculated from the XPS results.In the results, the binding energies of Ca, P, and N in the laser-irradiated group were higher than those in the control group. The Ca/P ratio of the Er:YAG laser irradiated group (1.24±0.05) was significantly lower than that of the control group (1.52±0.16). This study showed that Er:YAG laser irradiation decreased Ca/P ratio and denatured the collagen of human dentin.
We construct a kink solution on a non-BPS D-brane using Berkovits' formulation of superstring field theory in the level truncation scheme. The tension of the kink reproduces 95% of the expected BPS D-brane tension. We also find a lump-like solution which is interpreted as a kink-antikink pair, and investigate some of its properties. These results may be considered as successful tests of Berkovits' superstring field theory combined with the modified level truncation scheme.
Oral microbiome dysbiosis has important links to human health and disease. Although photodynamic therapy influences microbiome diversity, the specific effect of violet light irradiation remains largely unknown. In this study, we analyzed the effect of violet light-emitting diode (LED) irradiation on interdental plaque microbiota. Interdental plaque was collected from 12 human subjects, exposed to violet LED irradiation, and cultured in a specialized growth medium. Next-generation sequencing of the 16S ribosomal RNA genes revealed that α-diversity decreased, whereas β-diversity exhibited a continuous change with violet LED irradiation doses. In addition, we identified several operational taxonomic units that exhibited significant shifts during violet LED irradiation. Specifically, violet LED irradiation led to a significant reduction in the relative abundance of Fusobacterium species, but a significant increase in several species of oral bacteria, such as Veillonella and Campylobacter. Our study provides an overview of oral plaque microbiota changes under violet LED irradiation, and highlights the potential of this method for adjusting the balance of the oral microbiome without inducing antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.