Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists such as fenofibrate are used to treat dyslipidemia. Although fenofibrate is considered safe in humans, it is known to cause hepatocarcinogenesis in rodents. To evaluate untargeted metabolic profiling as a tool for gaining insight into the underlying pharmacology and hepatotoxicology, Fischer 344 male rats were dosed with 300 mg/kg/day of fenofibrate for 14 days and the urine and plasma were analyzed on days 2 and 14. A combination of liquid and gas chromatography mass spectrometry returned the profiles of 486 plasma and 932 urinary metabolites. Aside from known pharmacological effects, such as accelerated fatty acid beta-oxidation and reduced plasma cholesterol, new observations on the drug's impact on cellular metabolism were generated. Reductions in TCA cycle intermediates and biochemical evidence of lactic acidosis demonstrated that energy metabolism homeostasis was altered. Perturbation of the glutathione biosynthesis and elevation of oxidative stress markers were observed. Furthermore, tryptophan metabolism was up-regulated, resulting in accumulation of tryptophan metabolites associated with reactive oxygen species generation, suggesting the possibility of oxidative stress as a mechanism of nongenotoxic carcinogenesis. Finally, several metabolites related to liver function, kidney function, cell damage, and cell proliferation were altered by fenofibrate-induced toxicity at this dose.
Peroxisome proliferator (PP)-activated receptor-a (PPARa) agonists exhibit species-specific effects on livers of the rodent and human (h), which has been considered to reside in the difference of PPARa gene structures. However, the contribution of h-hepatocytes (heps) to the species-specificity remains to be clarified. In this study, the effects of fenofibrate were investigated using a hepatocyte-humanized chimeric mouse (m) model whose livers were replaced with h-heps at >70%. Fenofibrate induced hepatocellular hypertrophy, cell proliferation, and peroxisome proliferation in livers of severe combined immunodeficiency (SCID) mice, but not in the h-hep of chimeric mouse livers. Fenofibrate increased the expression of the enzymes of b-and !-hydroxylation and deoxygenation of lipids at both gene and protein levels in SCID mouse livers, but not in the h-heps of chimeric mouse livers, supporting the studies with h-PPARa-transgenic mice, a hitherto reliable model for studying the regulation of h-PPARa in the hliver in most respects, except the induction of the peroxisome proliferation. This study indicates the importance of not only h-PPARa gene but also h-heps themselves to correctly predict effects of fibrates on h-livers, and, therefore, suggests that the chimeric mouse is a currently available, consistent, and reliable model to obtain pharmaceutical data concerning the effects of fibrates on h-livers.
The polymorphisms in the human leukocyte antigen (HLA) region are powerful tool for studying human evolutionary processes. We investigated genetic structure of Japanese by using five-locus HLA genotypes (HLA-A, -B, -C, -DRB1, and -DPB1) of 2,005 individuals from 10 regions of Japan. We found a significant level of population substructure in Japanese; particularly the differentiation between Okinawa Island and mainland Japanese. By using a plot of the principal component scores, we identified ancestry informative alleles associated with the underlying population substructure. We examined extent of linkage disequilibrium (LD) between pairs of HLA alleles on the haplotypes that were differentiated among regions. The LDs were strong and weak for pairs of HLA alleles characterized by low and high frequencies in Okinawa Island, respectively. The five-locus haplotypes whose alleles exhibit strong LD were unique to Japanese and South Korean, suggesting that these haplotypes had been recently derived from the Korean Peninsula. The alleles characterized by high frequency in Japanese compared to South Korean formed segmented three-locus haplotype that was commonly found in Aleuts, Eskimos, and North- and Meso-Americans but not observed in Korean and Chinese. The serologically equivalent haplotype was found in Orchid Island in Taiwan, Mongol, Siberia, and Arctic regions. It suggests that early Japanese who existed prior to the migration wave from the Korean Peninsula shared ancestry with northern Asian who moved to the New World via the Bering Strait land bridge. These results may support the admixture model for peopling of Japanese Archipelago.
-The local lymph node assay has recently been accepted by regulatory agencies as a standalone alternate method for predicting allergic contact dermatitis. To compare the sensitivity of non-radioisotope methods with that of the standard assay, we determined if these modified methods would affect evaluation of sensitization potency. For this reason, we used 2,4-dinitrochlorobenzene (DNCB) and benzocaine for different sensitizing criteria.Female CBA mice were treated for 3 days with a test compound or vehicle applied to each side of both ears. Bilateral auricular lymph node proliferative activity was assessed by the following endpoints with incorporation of 3 H-methyl thymidine (3H-TdR), bromodeoxyuridine (BrdU) in vivo, and BrdU ex vivo, IL-2 production, and proliferating cell nuclear antigen (PCNA) expression. Ear thickness was also tested.The strong sensitizer DNCB was detectable by any of the non-radioisotope endpoints as well as by radioisotope-dependent standard assay. On the other hand, when evaluating the weak sensitizer benzocaine, significant changes were evident in BrdU incorporation ex vivo and in vivo, and IL-2 production. We believe that these non-radioisotope methods can assess allergic contact dermatitis caused by chemicals even in the laboratory, where it can be difficult to handle radioisotopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.