Islet-1 (Isl1) is a member of the Isl1 family of LIM-homeodomain transcription factors (LIM-HD) that is expressed in a defined subset of motor and sensory neurons during vertebrate embryogenesis. To investigate how this specific expression of isl1 is regulated, we searched for enhancers of the isl1 gene that are conserved in vertebrate evolution. Initially, two enhancer elements, CREST1 and CREST2, were identified downstream of the isl1 locus in the genomes of fugu, chick, mouse, and human by BLAST searching for highly similar elements to those originally identified as motor and sensory neuron-specific enhancers in the zebrafish genome. The combined action of these elements is sufficient for completely recapitulating the subtype-specific expression of the isl1 gene in motor neurons of the mouse spinal cord. Furthermore, by direct comparison of the upstream flanking regions of the zebrafish and human isl1 genes, we identified another highly conserved noncoding element, CREST3, and subsequently C3R, a similar element to CREST3 with two CDP CR1 recognition motifs, in the upstream regions of all other isl1 family members. In mouse and human, CRESTs are located as far as more than 300 kb away from the isl1 locus, while they are much closer to the isl1 locus in zebrafish. Although all of zebrafish CREST2, CREST3, and C3R activate gene expression in the sensory neurons of zebrafish, CREST2 of mouse and human does not have the sequence necessary for sensory neuron-specific expression. Our results revealed both a remarkable conservation of the regulatory elements regulating subtype-specific gene expression in motor and sensory neurons and the dynamic process of reorganization of these elements whereby each element increases the level of cell-type specificity by losing redundant functions with the other elements during vertebrate evolution.
A new method for the evaluation of stroke patients, designated the Stroke Impairment Assessment Set (SIAS) is presented. The SIAS primarily employs single task assessment of various functions and rates performance on scales of 0 to 5 or 0 to 3. The items evaluated include motor function, muscle tone, sensation, range of motion, pain, trunk control, visuospatial perception, aphasia and functions on the unaffected side. Scores for each item are plotted on a radar chart, so that deficits can be identified at a glance. The inter-observer variation in SIAS scores is acceptable and assessment can be performed as part of a routine clinical examination.
Islet-2 is a LIM/homeodomain-type transcription factor of the Islet-1 family expressed in embryonic zebrafish. Two Islet-2 molecules bind to the LIM domain binding protein (Ldb) dimers. Overexpression of the LIM domains of Islet-2 or the LIM-interacting domain of Ldb proteins prevented binding of Islet-2 to Ldb proteins in vitro and caused similar in vivo defects in positioning, peripheral axonal outgrowth, and neurotransmitter expression by the Islet-2-positive primary sensory and motor neurons as the defects induced by injection of Islet-2-specific antisense morpholino oligonucleotide. These and other experiments, i.e., mosaic analysis, coexpression of full-length Islet-2, and overexpression of the chimeric LIM domains derived from two different Islet-1 family members, demonstrated that Islet-2 regulates neuronal differentiation by forming a complex with Ldb dimers and possibly with some other Islet-2-specific cofactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.