An identified class of antifreeze, a xylomannan-based thermal hysteresis TH -producing glycolipid, has been discovered from diverse taxa, including plants, insects, and amphibians. We isolated xylomannan from the mycelium and fruit body of the basidiomycete Flammulina velutipes using successive hot extraction with water, 2% and 25% aqueous KOH, and gel filtration chromatography. The xylomannan from the fruit body had a recrystallization inhibiting RI activity RI=0.44 at 0.5 mg/mL. The dried weight yield of the fruit body 7.7 10 -2 %, w/w was higher than that of the mycelium. Although the purified xylomannan from both soures were composed of mannose and xylose in a 2 : 1 molar ratio, the molecular weight of the xylomannan from the mycelium and fruit body was 320,000 and 240,000, respectively. The RI activity of mycelial xylomannan was higher than that from the fruit body RI=0.57 at 45 µg/mL. Although this RI activity was able to remain constant after exposure to various conditions, we confirmed that the decrease of RI activity was stimulated by the decrease of molecular weight that was caused by heating during the alkaline condition. The survival rate of the CHO cells at -20 for two days increased to 97% due to the addition of 20 µg/mL of purified xylomannan. This was the first report to indicate that xylomannan from the mycelium of Flammulina velutipes had a high level of ice recrystallization inhibiting activity like antifreeze proteins from plants and had rhe potential to become a new material for cell storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.