SummaryBackgroundVonoprazan is a novel potassium‐competitive acid blocker which may provide clinical benefit in acid‐related disorders.AimTo verify the non‐inferiority of vonoprazan vs. lansoprazole in patients with erosive oesophagitis (EE), and to establish its long‐term safety and efficacy as maintenance therapy.MethodsIn this multicentre, randomised, double‐blind, parallel‐group comparison study, patients with endoscopically confirmed EE (LA Classification Grades A–D) were randomly allocated to receive vonoprazan 20 mg or lansoprazole 30 mg once daily after breakfast. The primary endpoint was the proportion of patients with healed EE confirmed by endoscopy up to week 8. In addition, subjects who achieved healed EE in the comparison study were re‐randomised into a long‐term study to investigate the safety and efficacy of vonoprazan 10 or 20 mg as maintenance therapy for 52 weeks.ResultsOf the 409 eligible subjects randomised, 401 completed the comparison study, and 305 entered the long‐term maintenance study. The proportion of patients with healed EE up to week 8 was 99.0% for vonoprazan (203/205) and 95.5% for lansoprazole (190/199), thus verifying the non‐inferiority of vonoprazan (P < 0.0001). Vonoprazan was also effective in patients with more severe EE (LA Classification Grades C/D) and CYP2C19 extensive metabolisers. In the long‐term maintenance study, there were few recurrences (<10%) of EE in patients treated with vonoprazan 10 or 20 mg. Overall, vonoprazan was well‐tolerated.ConclusionsThe non‐inferiority of vonoprazan to lansoprazole in EE was verified in the comparison study, and vonoprazan was well‐tolerated and effective during the long‐term maintenance study.
Rubicon is overexpressed and plays a pathogenic role in NAFLD by accelerating hepatocellular lipoapoptosis and lipid accumulation, as well as inhibiting autophagy. Rubicon may be a novel therapeutic target for regulating NAFLD development and progression. (Hepatology 2016;64:1994-2014).
Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries. The mechanism by which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) consist of myeloid and plasmacytoid subsets that play distinct roles in the regulation of antivirus immune responses; however, their roles in the pathogenesis of HCV infection are yet to be determined. We compared the numbers and functions of myeloid and plasmacytoid DCs between 43 patients with chronic hepatitis and 26 age-matched healthy volunteers. Absolute numbers of myeloid DCs, plasmacytoid DCs, and DC progenitors in the periphery were significantly lower in patients with chronic hepatitis than in healthy volunteers. Myeloid and plasmacytoid DCs from the patients had impaired abilities to stimulate allogeneic CD4 T cells and to produce interleukin (IL)-12 p70 and interferon- alpha , compared with those from healthy volunteers. After exposure to naive CD4 T cells, myeloid DCs from the patients were less able to drive the T helper type 1 response, whereas myeloid and plasmacytoid DCs from the patients primed more IL-10-producing cells than did those from healthy volunteers. In conclusion, in chronic HCV infection, both types of blood DCs are reduced and have an impaired ability to polarize T helper cells.
Multikinase inhibitor sorafenib inhibits proliferation and angiogenesis of tumors by suppressing the Raf/MEK/ERK signaling pathway and VEGF receptor tyrosine kinase. It significantly prolongs median survival of patients with advanced hepatocellular carcinoma (HCC) but the response is disease-stabilizing and cytostatic rather than one of tumor regression. To examine the mechanisms underlying the relative resistance in HCC, we investigated the role of autophagy, an evolutionarily conserved selfdigestion pathway, in hepatoma cells in vitro and in vivo. Sorafenib treatment led to accumulation of autophagosomes as evidenced by conversion from LC3-I to LC3-II observed by immunoblot in Huh7, HLF and PLC/PRF/5 cells. This induction was due to activation of autophagic flux, as there was further increase in LC3-II expression upon treatment with lysosomal inhibitors, clear decline of the autophagy substrate p62, and an mRFP-GFP-LC3 fluorescence change in sorafenib-treated hepatoma cells. Sorafenib inhibited the mammalian target of rapamycin complex 1 and its inhibition led to accumulation of LC3-II. Pharmacological inhibition of autophagic flux by chloroquine increased apoptosis and decreased cell viability in hepatoma cells. siRNA-mediated knockdown of the ATG7 gene also sensitized hepatoma cells to sorafenib. Finally, sorafenib induced autophagy in Huh7 xenograft tumors in nude mice and coadministration with chloroquine significantly suppressed tumor growth compared with sorafenib alone. In conclusion, sorafenib administration induced autophagosome formation and enhanced autophagic activity, which conferred a survival advantage to hepatoma cells. Concomitant inhibition of autophagy may be an attractive strategy for unlocking the antitumor potential of sorafenib in HCC.Sorafenib is an orally available multikinase inhibitor recently approved as the first molecular targeting compound for hepatocellular carcinoma (HCC). 1 Sorafenib inhibits Raf kinases, including Raf-1 and B-Raf, which are members of the Raf/ MEK/ERK signaling pathway, and inhibits a number of receptor tyrosine kinases involved in neo-angiogenesis and tumor progression, such as vascular endothelial growth factor receptor (VEGFR) 2, platelet-derived growth factor receptor b and c-Kit. Two randomized, placebo-controlled trials revealed that sorafenib significantly prolongs the median survival of patients with advanced HCC but the response is disease-stabilizing and cytostatic rather than one of tumor regression. 2,3 Therefore, a more detailed understanding of the mechanisms underlying both the antitumor effect and the primary resistance to this compound may provide insights that can help to improve the therapeutic outcome in HCC.Macroautophagy (hereafter referred to as autophagy) is an evolutionally conserved catabolic process that transports cellular macromolecules and organelles to a lysosomal degradation pathway. 4 It is regulated by autophagy-related (atg) genes that control the formation and maturation of a doublemembrane vesicle, autophagosome, which seq...
NK cells are potent activators of dendritic cells (DCs), but it remains obscure how third-party cells affect the ability of NK cells to modulate DC functions. We show here that NK cells derived from healthy donors (N-NK), when cocultured with human liver epithelial cells, induced maturation as well as activation of DCs, such as increased migratory capacity as well as T cell stimulatory activity. In contrast, NK cells from chronic hepatitis C virus-infected donors (HCV-NK) were not capable of activating DCs under the same conditions. In comparison to N-NK, HCV-NK showed higher expression of CD94/NKG2A and produced IL-10 and TGFβ when cultured with hepatic cells, most of which express HLA-E, a ligand for CD94/NKG2A. Blockade of NKG2A restored the ability of HCV-NK to activate DCs, which appeared to result from the reduced NK cell production of IL-10 and TGFβ. The blockade also endowed HCV-NK with an ability to drive DCs to generate Th1-polarized CD4+ T cells. These findings show that NK cell modulation of DCs is regulated by third-party cells through NK receptor and its ligand interaction. Aberrant expression of NK receptors may have an impact on the magnitude and direction of DC activation of T cells under pathological conditions, such as chronic viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.