b This is the first report of a detailed relationship between triazole treatment history and triazole MICs for 154 Aspergillus fumigatus clinical isolates. The duration of itraconazole dosage increased as the itraconazole MIC increased, and a positive correlation was observed (r ؍ 0.5700, P < 0.0001). The number of itraconazole-naïve isolates dramatically decreased as the itraconazole MIC increased, particularly for MICs exceeding 2 g/ml (0.5 g/ml versus 2 g/ml, P ؍ 0.03). We also examined the relationship between cumulative itraconazole usage and the MICs of other azoles. A positive correlation existed between itraconazole dosage period and posaconazole MIC (r ؍ 0.5237, P < 0.0001). The number of itraconazole-naïve isolates also decreased as the posaconazole MIC increased, particularly for MICs exceeding 0.5 g/ml (0.25 g/ml versus 0.5 g/ml, P ؍ 0.004). Conversely, the correlation coefficient obtained from the scattergram of itraconazole usage and voriconazole MICs was small (r ؍ ؊0.2627, P ؍ 0.001). Susceptibility to three triazole agents did not change as the duration of voriconazole exposure changed. In addition, we carried out detailed analysis, including microsatellite genotyping, for isolates obtained from patients infected with azole-resistant A. fumigatus. We confirmed the presence of acquired resistance to itraconazole and posaconazole due to a G54 substitution in the cyp51A gene for a patient with chronic pulmonary aspergillosis after oral itraconazole therapy. We should consider the possible appearance of azole-resistant A. fumigatus if itraconazole is used for extended periods.
We investigated the triazole, amphotericin B, and micafungin susceptibilities of 196 A. fumigatus clinical isolates in Nagasaki, Japan. The percentages of non-wild-type (non-WT) isolates for which MICs of itraconazole, posaconazole, and voriconazole were above the ECV were 7.1%, 2.6%, and 4.1%, respectively. A G54 mutation in cyp51A was detected in 64.2% (9/14 isolates) and 100% (5/5 isolates) of non-WT isolates for itraconazole and posaconazole, respectively. Amphotericin B MICs of >2 g/ml and micafungin minimum effective concentrations (MECs) of >16 g/ml were recorded for two and one isolates, respectively.
The pathogenic fungus Candida glabrata is relatively resistant to azole antifungals, which target lanosterol 14α-demethylase (Erg11p) in the ergosterol biosynthesis pathway. Our study revealed that C. glabrata exhibits increased azole susceptibility under low-iron conditions. To investigate the molecular basis of this phenomenon, we generated a strain lacking the heme (iron protoporphyrin IX)-binding protein Dap1 in C. glabrata. The Δdap1 mutant displayed growth defects under iron-limited conditions, decreased azole tolerance, decreased production of ergosterol, and increased accumulation of 14α-methylated sterols lanosterol and squalene. All the Δdap1 phenotypes were complemented by wild-type DAP1, but not by DAP1(D91G) , in which a heme-binding site is mutated. Furthermore, azole tolerance of the Δdap1 mutant was rescued by exogenous ergosterol but not by iron supplementation alone. These results suggest that heme binding by Dap1 is crucial for Erg11 activity and ergosterol biosynthesis, thereby being required for azole tolerance. A Dap1-GFP fusion protein predominantly localized to vacuolar membranes and endosomes, and the Δdap1 cells exhibited aberrant vacuole morphologies, suggesting that Dap1 is also involved in the regulation of vacuole structures that could be important for iron storage. Our study demonstrates that Dap1 mediates a functional link between iron homeostasis and azole resistance in C. glabrata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.