Maintenance of skeletal muscle mass relies on the dynamic balance between anabolic and catabolic processes and is important for motility, systemic energy homeostasis, and viability. We identified direct target genes of the glucocorticoid receptor (GR) in skeletal muscle, i.e., REDD1 and KLF15. As well as REDD1, KLF15 inhibits mTOR activity, but via a distinct mechanism involving BCAT2 gene activation. Moreover, KLF15 upregulates the expression of the E3 ubiquitin ligases atrogin-1 and MuRF1 genes and negatively modulates myofiber size. Thus, GR is a liaison involving a variety of downstream molecular cascades toward muscle atrophy. Notably, mTOR activation inhibits GR transcription function and efficiently counteracts the catabolic processes provoked by glucocorticoids. This mutually exclusive crosstalk between GR and mTOR, a highly coordinated interaction between the catabolic hormone signal and the anabolic machinery, may be a rational mechanism for fine-tuning of muscle volume and a potential therapeutic target for muscle wasting.
Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that ablation of adult neurogenesis prior to pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis prior to acute seizures is long-lasting as it suppresses chronic seizure frequency for nearly one year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.
Skeletal muscle atrophy occurs in aging and pathological conditions, including cancer, diabetes and AIDS. Treatment of atrophy is based on either preventing protein-degradation pathways, which are activated during atrophy, or activating protein-synthesis pathways, which induce muscle hypertrophy. Here we show that neuronal nitric oxide synthase (nNOS) regulates load-induced hypertrophy by activating transient receptor potential cation channel, subfamily V, member 1 (TRPV1). The overload-induced hypertrophy was prevented in nNOS-null mice. nNOS was transiently activated within 3 min after overload. This activation promoted formation of peroxynitrite, a reaction product of nitric oxide with superoxide, which was derived from NADPH oxidase 4 (Nox4). Nitric oxide and peroxynitrite then activated Trpv1, resulting in an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) that subsequently triggered activation of mammalian target of rapamycin (mTOR). Notably, administration of the TRPV1 agonist capsaicin induced hypertrophy without overload and alleviated unloading- or denervation-induced atrophy. These findings identify nitric oxide, peroxynitrite and [Ca(2+)](i) as the crucial mediators that convert a mechanical load into an intracellular signaling pathway and lead us to suggest that TRPV1 could be a new therapeutic target for treating muscle atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.