In this paper, we propose a control law for a discrete-time linear system with actuator saturation to track time-varying reference signals. The proposed control law consists of a feedback controller and a target recalculation mechanism. The feedback controller includes an integrator to achieve zero steady-state error in the case where the reference signal is constant. The feedback gains of the controller are parameterized by a single scheduling parameter. In the proposed control algorithm, when the tracking error is large, a modified reference signal is computed by the target recalculation mechanism so that feasibility of the algorithm and stability of the control system are guaranteed at all times. At this stage, the controller state is modified online so that the tracking control performance is improved. Further, when the tracking error becomes small, the scheduling parameter and the controller state are updated simultaneously so that the tracking control performance is improved. The problems of determining the scheduling parameter, the controller state, and the modified reference signal are reduced to convex optimization problems with linear matrix inequality constraints. The effectiveness of the proposed control method is shown through an experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.