A single-crystalline macroporous layered silicate was obtained for the first time. Firstly, UTL-type zeolite with macropores was prepared hydrothermally under the presence of acetylene black as a macropore template and the subsequent calcination to remove the template. Double four-membered ring (d4r) units in the UTL framework were selectively dissolved to yield a layered silicate with macropores. Intercalation of tetrabutylammonium ions into the macroporous layered silicate is accelerated if compared with that into the same silicate without macropores, indicating the effectiveness of macropores due to easy diffusion. The layered silicate with macropores was converted into PCR-type zeolite with macropores, a hierarchically micro- and macroporous material, through interlayer condensation.
A single‐crystalline macroporous layered silicate was obtained through hydrothermal synthesis of UTL‐type zeolite with macropores under the presence of acetylene black, subsequent calcination for removal of the template, and selective leaching of double four membered ring units in the UTL framework. Intercalation of tetrabutylammonium ions into the macroporous layered silicate is accelerated if compared with that into the same silicate without macropores, indicating the effectiveness of macropores due to easy diffusion. More information can be found in Full Paper by K. Kuroda et al. on page 11022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.