Recently, the millimeter-wave band has been used in outdoor wireless communications to improve the frequency utilization efficiency. In this study, we propose a method to realize line-of-sight multiple-input multiple-output (LOS-MIMO) transmission independent of the transmitted distance using a two-dimensional (2-D) fixed antenna element arrangement, assuming millimeter-wave-band communication by small autonomous unmanned aerial vehicles. In conventional LOS-MIMO transmission with uniformly spaced antenna elements, the theoretical upper bound of the channel capacity is obtained, which decreases at a certain transmitted distance. Therefore, we focus on the fact that the propagation channel characteristics in pure LOS are geometrically determined by the transmitted distance, and consider the optimization of the arrangement of antenna elements. The element arrangement is fixed without using antenna selection from the viewpoint of system simplification. In addition, from the viewpoint of array size, we study the optimization corresponding to a 2-D element arrangement. The proposed method approximates the optimal arrangement from a vast number of 2-D element arrangements using a genetic algorithm. We evaluate the channel capacity characteristics of the proposed method by computer simulation and show that the characteristic degradation due to change in the transmitted distance in conventional LOS-MIMO transmission is improved. In addition, we evaluate a 4 × 4 MIMO transmission in an outdoor environment. The 4 × 4 MIMO propagation channel is also measured by an actual measurement equipment in the 66-GHz band and it is shown that the measured and calculated results agree with each other. INDEX TERMS Millimeter wave, unmanned aerial vehicle, line-of-sight multiple-input multiple-output, non-uniform antenna array, genetic algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.