The great amount of water used for cooling the stricken power reactors at Fukushima Dai-ichi following the earthquake and tsunami of 11 March 2011 has resulted in accumulation of cooling water so-called the remaining water in some buildings.
As the cooling water is subsequently contaminated by fission products (FPs) and some other radioactive substances, it is necessary to decontaminate this ‘cooling water’ to reduce the volume of liquid radioactive waste and to reuse it again for cooling the affected reactors.
Some methods are applied to remove the radioactive substances from the cooling water. However, after treatments of water, there arises a secondary radioactive waste, the sludge. Steps are now taken to immobilize this sludge.
In this paper, BaSO4, as one of main constituents of the sludge, was chosen as an immobilizing target substance. The appropriate manufacturing condition of glass waste form for loading the sludge (BaSO4) was studied and the chemical durability was evaluated by measuring the dissolution rate. For this experiment, the iron phosphate glass (IPG), which is known to possess a large loading capacity for a variety of chemical substances, was employed as the glass medium.
Based on experimental results, it is evident that BaSO4 can be loaded into the IPG medium when it possesses the appropriate composition and melting temperature. During loading, BaSO4 converted into BaO, acting as a network modifier, which leads to enhanced stability of IPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.