Summary
The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells and their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.
To elucidate the mechanism of cellulose synthesis, we isolated a mutant of Arabidopsis (changed sensitivity to cellulose synthesis inhibitors 1, css1) that showed changed sensitivity to cellulose biosynthesis inhibitor. The analysis of phenotypes indicated that the css1 mutation influenced various fundamental metabolic pathways including amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Unexpectedly, the map-based cloning of the gene responsible for the css1 mutation identified a protein (At-nMat1a) that was assumed to be a splicing factor of the mitochondrial group II intron. In accordance with this result, this mutant exhibited improper splicing of the mitochondrial NAD4 transcript. We noticed that the phenotypes of the css1 mutant are similar to the responses to anoxia that hinders mitochondrial aerobic respiration. It seems that the defect in the function of mitochondria influences various aspects of fundamental cellular metabolism including cellulose synthesis. Our results suggested that sucrose synthase (SuSy), an enzyme involved in the biosynthesis of cellulose, plays key roles in the connection between mitochondria and cellulose synthesis. The isolation of the css1 mutant also provides a useful resource in the study of post-transcriptional gene regulation in mitochondria.
Iron is an essential element for all organisms, and plants have developed sophisticated systems to acquire iron and maintain iron homeostasis. We found that an Arabidopsis thaliana abscisic acid-hypersensitive mutant, aba hypersensitive germination2-1 (ahg2-1), that is known to be defective in mitochondrial mRNA regulation had increased expression of iron deficiency response genes. The ahg2-1 mutant had lower heme levels than the wild type. Transcriptome data further revealed that novel genes encoding short polypeptides were highly expressed in this mutant. The expression of one of these genes, which we named FE-UPTAKE-INDUCING PEPTIDE 1 (FEP1), was induced under iron-deficient conditions and was observed in the vascular tissues of the leaves and roots, as well as in leaf mesophyll cells. Notably, deletion or insertion mutations of FEP1 exhibited impaired iron accumulation in shoots but normal iron levels in roots. Artificially induced expression of FEP1 was sufficient to induce iron deficiency response genes, such as basic HELIX-LOOP-HELIX 38 (bHLH38), bHLH39, IRON-REGULATED TRANSPORTER1 (IRT1), and FERRIC REDUCTION OXIDASE2 (FRO2), and led to iron accumulation in planta. Further analysis confirmed that the encoded peptide, but not the FEP1 RNA, was responsible for this activity. Remarkably, the activation of bHLH39 by FEP1 was independent of FER-LIKE IRON DEFICIENCY INDUCED (FIT), a key transcription factor in the iron deficiency response. Taken together, our results indicate that FEP1 functions in iron homeostasis through a previously undescribed regulatory mechanism for iron acquisition in Arabidopsis.
Inflammatory responses in the kidney lead to tubulointerstitial fibrosis, a common feature of chronic kidney diseases. Here we examined the role of prostaglandin E(2) (PGE(2)) in the development of tubulointerstitial fibrosis. In the kidneys of wild-type mice, unilateral ureteral obstruction leads to progressive tubulointerstitial fibrosis with macrophage infiltration and myofibroblast proliferation. This was accompanied by an upregulation of COX-2 and PGE(2) receptor subtype EP(4) mRNAs. In the kidneys of EP(4) gene knockout mice, however, obstruction-induced histological alterations were significantly augmented. In contrast, an EP(4)-specific agonist significantly attenuated these alterations in the kidneys of wild-type mice. The mRNAs for macrophage chemokines and profibrotic growth factors were upregulated in the kidneys of wild-type mice after ureteral obstruction. This was significantly augmented in the kidneys of EP(4)-knockout mice and suppressed by the EP(4) agonist but only in the kidneys of wild-type mice. Notably, COX-2 and MCP-1 proteins, as well as EP(4) mRNA, were localized in renal tubular epithelial cells after ureteral obstruction. In cultured renal fibroblasts, another EP(4)-specific agonist significantly inhibited PDGF-induced proliferation and profibrotic connective tissue growth factor production. Hence, an endogenous PGE(2)-EP(4) system in the tubular epithelium limits the development of tubulointerstitial fibrosis by suppressing inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.