Ce0.9Gd0.1O2−x (CGO) layers were deposited onto nonconductive porous NiO–CGO supports by electrophoretic infiltration, and then compacted by isostatic pressing to achieve a high packing density of the deposited layer. The bilayers were sintered to give dense CGO layers at 1290°C in air. A fuel cell comprising an La0.6Sr0.4Co0.2Fe0.8O3−x cathode, a 10‐μm CGO electrolyte, and a Ni–CGO anode was tested at 550°C with humidified 10% H2 and air. The cell showed an open circuit voltage of 0.86 V and delivered a steady current of about 470 mA/cm2 at a terminal voltage of 0.24 V.
A novel metal supported Solid Oxide Fuel Cell has been developed, capable of operating at temperatures of 500-600°C. The rationale behind the materials used to construct this fuel cell type is given, and results presented from cell and short stack testing, including durability and thermal cycling trials. This new fuel cell variant is shown to be tolerant of carbon monoxide durable, robust to thermal and redox cycling, and capable of delivering technologically relevant power densities.
The Brønsted acid-catalyzed synthesis of nitriles is described via transoximation under mild conditions using an O-protected oxime as a more stable equivalent of explosive O-protected hydroxylamines. The nitrile was generated via an O-protected aldoxime produced from the aldehyde and an O-protected oxime through transoximation. The reaction could be performed on a 1 g scale.
The Brønsted acid-catalyzed
synthesis of secondary amides
from ketones under mild conditions is described via transoximation
and Beckmann rearrangement using O-protected oximes as more stable
equivalents of explosive O-protected hydroxylamines. This methodology
could be applied to highly rearrangement-selective amide synthesis
from α-branched alkyl aryl ketones and performed on a 1-g scale.
The presence of water is essential for this reaction, and its role
was clarified by isotope-labeling experiments.
Inspired by bio-synthesis, we demonstrate Brønsted acid catalyzed transoximation for the synthesis of oximes without using hydroxylamine salts in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.