SUMMARY Members of the insulin family of peptides have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. Here we show that Drosophila insulin-like peptide 6 (DILP6), which is structurally similar to vertebrate insulin-like growth factor (IGF), is predominantly expressed in the fat body, a functional equivalent of the vertebrate liver and adipocytes. This expression occurs during the postfeeding stage under the direct regulation of ecdysteroid. We further reveal that dilp6 mutants show growth defects during the postfeeding stage, which results in reduced adult body size through a decrease in cell number. This phenotype is rescued by fat body-specific expression of dilp6. These data indicate that DILP6 is a functional, as well as a structural, counterpart of vertebrate IGFs. Our data provide in vivo evidence for a role of ILPs in determining adult body size through the regulation of postfeeding growth.
Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS-induced NF-κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3- and AIM2-activated ASC oligomerization, whereas ILG inhibited NLRP3-activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP-induced IL-1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD-induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD-induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet-induced adipose tissue inflammation and IL-1β and caspase-1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome-associated inflammatory diseases.
SUMMARY Steroid hormones are a group of lipophilic hormones that are believed to enter cells by simple diffusion to regulate diverse physiological processes through intracellular nuclear receptors. Here, we challenge this model in Drosophila by demonstrating that Ecdysone Importer (EcI), a membrane transporter identified from two independent genetic screens, is involved in cellular uptake of the steroid hormone ecdysone. EcI encodes an organic anion transporting polypeptide of the evolutionary conserved solute carrier organic anion superfamily. In vivo, EcI loss-of-function causes phenotypes indistinguishable from ecdysone-or ecdysone receptor (EcR)-deficient animals, and EcI knockdown inhibits cellular uptake of ecdysone. Furthermore, EcI regulates ecdysone signaling in a cell-autonomous manner and is both necessary and sufficient for inducing ecdysone-dependent gene expression in culture cells expressing EcR. Altogether, our results challenge the simple diffusion model for cellular uptake of ecdysone and may have wide implications for basic and medical aspects of steroid hormone studies.
Members of the insulin peptide family have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. Drosophila insulin-like peptides (Dilps) promote tissue growth through the single insulin-like receptor (InR). Despite the important role of Dilps in nutrient-dependent growth control, the molecular mechanism that regulates the activity of circulating Dilps is not well understood. Here, we report the function of a novel secreted decoy of InR (SDR) as a negative regulator of insulin signaling. SDR is predominantly expressed in glia and is secreted into the hemolymph. Larvae lacking SDR grow at a faster rate, thereby increasing adult body size. Conversely, overexpression of SDR reduces body growth non-cell-autonomously. SDR is structurally similar to the extracellular domain of InR and interacts with several Dilps in vitro independent of Imp-L2, the ortholog of the mammalian insulin-like growth factor-binding protein 7 (IGFBP7). We further demonstrate that SDR is constantly secreted into the hemolymph independent of nutritional status and is essential for adjusting insulin signaling under adverse food conditions. We propose that Drosophila uses a secreted decoy to fine-tune systemic growth against fluctuations of circulating insulin levels.
The insulin-like peptide (ILP) family plays key biological roles in the control of body growth. Although the functions of ILPs are well understood, the mechanisms by which organisms sense their nutrient status and thereby control ILP production remain largely unknown. Here, we show that signaling relay and feedback mechanisms control the nutrient-dependent expression of Drosophila ILP5 (Dilp5). The expression of dilp5 in brain insulin-producing cells (IPCs) is negatively regulated by the transcription factor FoxO. Glia-derived Dilp6 remotely regulates the FoxO activity in IPCs, primarily through Jeb secreted by cholinergic neurons. Dilp6 production by surface glia is amplified by cellular response to circulating Dilps derived from IPCs, in concert with amino acid signals. The induction of dilp5 is critical for sustaining body growth under restricted food conditions. These results provide a molecular framework that explains how the production of an endocrine hormone in a specific tissue is coordinated with environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.