Here reports an photoinduced glycosylation of trichloroacetimidate donors and several alcohols using 3,11‐dimethoxydinaphthothiophene as an organo Lewis photoacid catalyst upon long‐wavelength UV‐LED light (385 nm) irradiation. The reaction proceeded under mild reaction conditions smoothly to give the corresponding glycosides in good to high yields. In addition, the present glycosylation method was applicable to a wide range of trichloroacetimidate donors and acceptors. Furthermore, the dinaphthothiophene catalyst could be recovered and reused without any loss of efficiency. Moreover, this glycosylation method was applied successfully to the total synthesis of a biologically active natural product, cholesteryl 6‐O‐myristoyl‐α‐glucoside.
C‐mannosylation is a rare type of protein glycosylation whereby a single mannose is added to the first tryptophan in the consensus sequence Trp‐Xaa‐Xaa‐Trp/Cys (in which Xaa represents any amino acid). Its consensus sequence is mainly found in proteins containing a thrombospondin type‐1 repeat (TSR1) domain and in type I cytokine receptors. In these proteins, C‐mannosylation affects protein secretion, intracellular localization, and protein stability; however, the role of C‐mannosylation in proteins that are not type I cytokine receptors and/or do not contain a TSR1 domain is less well explored. In this study, we focused on human vitelline membrane outer layer protein 1 homolog (VMO1). VMO1, which possesses two putative C‐mannosylation sites, is a 21‐kDa secreted protein that does not contain a TSR1 domain and is not a type I cytokine receptor. Mass spectrometry analyses revealed that VMO1 is C‐mannosylated at Trp105 but not at Trp44. Although C‐mannosylation does not affect the extracellular secretion of VMO1, it destabilizes the intracellular VMO1. In addition, a structural comparison between VMO1 and C‐mannosylated VMO1 showed that the modification of the mannose changes the conformation of three loops in VMO1. Taken together, our results demonstrate the first example of C‐mannosylation for protein destabilization of VMO1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.