9% Ni steel has been used for LNG storage tanks for more than four decades although 5.5% Ni steel (N-TUF CR196) was developed in the 1970’s using a special heat treatment method named L-treatment. The reason why the actual application of 5.5% Ni steel has not been attained to LNG storage tanks is mainly because the requirement of fracture properties is not confirmed for the tanks. Under the circumstances of expanding demand for natural gas and double-integrity in LNG storage tanks, we restarted developing low Ni steel for LNG storage tanks by using both conventional and advanced techniques. For the application of low Ni steel to the present LNG storage tanks, both fracture initiation and propagation properties of base metal plates and welded joints should be concerned. The fracture initiation and propagation properties of base metal were compensated with the intercritical reheating process (L-treatment), and the propagation property was additionally enhanced by combining TMCP with L-treatment. In addition, the chemical composition adjustment and the homogenization treatment of solute elements were conducted for improving the fracture initiation and propagation properties of welded joints. 6% Ni steel plates were manufactured by the process of continuous casting, reheating, hot rolling, direct quenching (TMCP), L-treatment, and tempering, and their chemical composition was 0.05C-0.06Si-1.0Mn-6.3Ni-Cr-Mo. As the results of fracture property evaluation including large-scale fracture tests such as the duplex ESSO test and the wide plate tensile test, it was demonstrated that 6% Ni steel has good characteristics regarding brittle fracture initiation and propagation in base metal plates and welded joints.
Synopsis :It is well known that the corrosion resistance of steels is improved by the addition of alloying elements. For stainless steels, a large amount of Cr is added to obtain good corrosion resistance and the addition of rare metals such as Mo and Ni etc. are applied for further improvement of the corrosion resistance depending on corrosion environments.On the other hand, we investigated the effects of combining the addition of alloying elements and surface treatment aiming to develop new corrosion resistant steel at lower cost by reducing the content of alloying elements. We found that 6% Cr contained steel with inorganic zinc primer showed excellent anti-rust resistance in high chloride environments. Besides, the apparent rust area and maximum corrosion depth of 6% Cr contained steel were largely reduced by the addition of Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.