Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPAR␥ coactivator (PGC)-1␣ is a potent transcriptional coactivator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1␣ mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1␣ in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1␣ from an alternate promoter. The induction of PGC-1␣ depended on -adrenergic signaling. -adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1␣. The orphan nuclear receptor ERR␣ mediated the induction of VEGF by PGC-1␣, and mice lacking ERR␣ also failed to increase vascular density after exercise. These data demonstrate that -adrenergic stimulation of a PGC-1␣/ERR␣/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.VEGF ͉ ERR␣ ͉ -adrenergic
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12-Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.
Background-Rho-associated kinase (ROCK), an effector of small GTPase Rho, regulates vascular tone via a calcium sensitization mechanism and plays a key role in the pathogenesis of hypertension. However, its role in vascular growth remains unclear. Methods and Results-Y-27632, a specific ROCK inhibitor, and the overexpression of dominant-negative ROCK suppressed the mitogen-induced DNA synthesis of cultured vascular smooth muscle cells (VSMCs), which indicates the essential role of ROCK in the control of VSMC proliferation in vitro. Y-27632 also suppressed the chemotaxis of VSMCs. Male Wistar rats were systemically given Y-27632 (35 to 70 mg ⅐ kg Ϫ1 ⅐ day Ϫ1 ) through an intraperitoneal infusion. The neointimal formation of balloon-injured carotid arteries was significantly suppressed in Y-27632-treated rats (intima/media ratio, 0.22Ϯ0.02) compared with vehicle-treated rats (intima/media ratio, 0.92Ϯ0.21) or hydralazine-treated rats with a similar blood pressure decrease (intima/media ratio, 1.03Ϯ0.15). The phosphorylation of myosin phosphatase and myosin light chain was elevated in injured arteries in a Y-27632-sensitive manner, indicating the augmentation of ROCK activity in neointimal formation. The downregulation of the cyclin-dependent kinase inhibitor p27 kip1 in injured vessels was reversed by Y-27632 treatment, reflecting the antiproliferative effect of ROCK inhibition in vivo. Conclusions-We conclude that ROCK plays a key role in the process of neointimal formation after balloon injury. Thus, the inhibition of ROCK may be a potential therapeutic strategy for treating vascular proliferative disorders and hypertension. Key Words: atherosclerosis Ⅲ muscle, smooth Ⅲ remodeling Ⅲ signal transduction Ⅲ hypertension E levated vascular tone contributes to the pathogenesis of hypertension. Rho-associated kinase (ROCK), 1 a target of small GTPase Rho, regulates vascular contractility by increasing the level of phosphorylated myosin light chain and thereby elevating the calcium sensitivity of vascular smooth muscle cells (VSMCs). 2 Recently, Uehata et al 3 developed a potent, specific, ROCK inhibitor, Y-27632. The administration of Y-27632 to several hypertensive rat models markedly reduced systolic blood pressure (SBP), implicating ROCK as a key mediator in the pathogenesis of hypertension. 3 We and others have reported that regulators of vascular tone, such as angiotensin II or natriuretic peptides, are also involved in vascular growth. 4 Thus, we postulated that intracellular mechanism(s) should exist that govern both vascular contraction and growth. Using Y-27632 and dominant-negative ROCK, the present study demonstrates that ROCK, the key regulator of vascular contraction, also controls vascular growth in vitro and in vivo. Methods MaterialsY-27632 was obtained from Yoshitomi Pharmaceutical Industries, Osaka, Japan. The pCAG-myc and pCAG-myc-KD-IA plasmids 1 were a gift from T. Ishizaki and S. Narumiya (Kyoto University). The pEXV-myc-N19RhoA was from M. Symons (the Picower Institute for Medical Research), and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.