Extraction of Pu(IV) with tri-n-butylphosphate is performed using a glass chip microchannel to evaluate the extraction rate. Two-phase flow forms in the microchannel by introducing a solution of Pu(IV) and tri-n-butylphosphate with flow rates above 5 μL/min. The Pu(IV) extraction reaction proceeds at the interface between the two phases. To evaluate the extraction rate, the contact time between the two phases is varied from 0.48 to 4.8 s by changing the confluent length of the microchannel and the flow rate. The Pu concentration of each phase collected from the microchannel is measured with an alpha liquid scintillation counter, and the contact time dependence of Pu(IV) extraction is obtained. An extraction model based on diffusion in the microchannel and the reaction at the interface is proposed and applied to determine the extraction rate. The extraction process is assumed to follow pseudo-first-order kinetics, and the extraction rate constant of Pu(IV) is determined to be 1.5 × 10(-2) cm/s. The investigation demonstrates that a microfluidic device can be a new tool to determine Pu(IV) extraction rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.