To investigate the effect of antibody orientation on its immunological activities, we developed a novel and versatile platform consisting of a well-defined phospholipid polymer surface on which staphylococcal protein A (SpA) was site-selectively immobilized. The application of a biocompatible phospholipid-based platform ensured minimal denaturation of immobilized antibodies, and the site-selective immobilization of SpA clarified the effect of antibody orientation on immunological activities. The phospholipid polymer platform was prepared on silicon substrates using the surface-initiated atom transfer radical polymerization (SI-ATRP) technique. An enzymatic reaction was performed for orientation-selective coupling of SpA molecules to the polymer brush surface. Orientation-controlled antibodies were achieved using enzymatic reactions, and these antibodies captured 1.8 ± 0.1 antigens on average, implying that at least 80% of immobilized antibodies reacted with two antigens. Theoretical multivalent binding analysis further revealed that orientation-controlled antibodies had antigen-antibody reaction equilibrium dissociation constants (K(d)) as low as 8.6 × 10(-10) mol/L, whereas randomly oriented and partially oriented antibodies showed K(d) values of 2.0 × 10(-7) and 1.2 × 10(-7) mol/L, respectively. Strict control of antibody orientation not only formed an approximately 100-fold stronger antigen-antibody complex than the controls but also sustained the native antibody K(d) (10(-10)-10(-9) mol/L). These findings support the significance of antibody orientation because controlling the orientation resulted in high reactivity and theoretical binding capacity.
We have performed deformed Hartree-Fock+BCS calculations with the Skyrme SIII force for the ground states of even-even nuclei with 2 ≤ Z ≤ 114 and N ranging from outside the proton drip line to beyond the experimental frontier in the neutron-rich side. We obtained spatially localized solutions for 1029 nuclei, together with the second minima for 758 nuclei. The single-particle wavefunctions are expressed in a three-dimensional Cartesian-mesh representation, which is suitable to describe nucleon skins, halos, and exotic shapes as well as properties of ordinary stable nuclei. After explaining some of the practical procedures of the calculations, we compare the resulting nuclear masses with experimental data and the predictions of other models. We also discuss the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, the halo radii, and the energy difference between the oblate and the prolate solutions. Our results can be obtained via computer network.
pH-Sensitive dextran derivatives having 3-methylglutarylated residues (MGlu-Dex) were prepared by reacting dextran with 3-methyl-glutaric anhydride. MGlu-Dex changed the protonation state and their characteristics from hydrophilic to hydrophobic in neutral and acidic pH regions. Surface modification of egg yolk phosphatidylcholine liposomes with MGlu-Dex produced highly pH-sensitive liposomes that were stable at neutral pH but which were destabilized strongly in the weakly acidic pH region. MGlu-Dex-modified liposomes were taken up efficiently by dendritic cells and delivered entrapped ovalbumin (OVA) molecules into the cytosol. When MGlu-Dex-modified liposomes loaded with OVA were administered subcutaneously to mice, the antigen-specific humoral and cellular immunity was induced more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of MGlu-Dex-modified liposomes loaded with OVA to mice bearing E.G7-OVA tumor significantly suppressed tumor growth and extended the mice survival. Results suggest that MGlu-Dex-modified liposomes are promising for the production of safe and potent antigen delivery systems that contribute to the establishment of efficient cancer immunotherapy.
Purpose: MAPK-pathway is one of the most important pathways for a new anticancer drug development. We performed a high-throughput screening for compounds that induce expressions of p15INK4b, and finally identified a novel MEK1/2 inhibitor JTP-74057 (GSK1120212) being evaluated in clinical trials. We characterized its antitumor activities in vitro and in vivo. Experimental design: The MEK inhibitory activity was evaluated using recombinant proteins, and its specificity was confirmed against multiple kinases. Several colorectal cancer cell lines were used for proliferation assay, apoptosis assay, and xenograft model. Results: JTP-74057 strongly inhibited MEK1/2 kinase activities, but did not inhibit other 98 kinase activities. Treatment with JTP-74057 resulted in growth inhibition accompanied with upregulation of p15INK4b and/or p27KIP1 in most colorectal cancer cell lines, which we tested. Daily oral administration of JTP-74057 for 14 days suppressed tumor growth both of HT-29 and COLO205 xenografts in nude mice. Interestingly, the tumor regression was observed only in COLO205 xenografts, and COLO205 was also much more sensitive to JTP-74057 for inducing apoptosis than HT-29 in vitro. Treatment with an Akt inhibitor enhanced the JTP-74057-induced apoptosis in HT-29 cells. Finally, JTP-74057 exhibited an additive or a synergistic effect in combination with the standard-of-care agents, 5-fluorouracil, oxaliplatin or SN-38. Conclusions: JTP-74057, a highly specific and potent MEK1/2 inhibitor, exerts favorable antitumor activities in vitro and in vivo. Sensitivity to JTP-74057-induced apoptosis might be an important factor for the estimation of in vivo efficacy, and the treatment with an Akt inhibitor enhanced the induction of apoptosis. These results suggest the usefulness of JTP-74057 in therapeutic applications for colorectal cancer patients. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3585. doi:10.1158/1538-7445.AM2011-3585
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.