Most music emotion recognition approaches perform classification or regression that estimates a general emotional category from a distribution of music samples, but without considering emotional variations (e.g., happiness can be further categorised into much, moderate or little happiness). We propose an embedding-based music emotion recognition approach that associates music samples with emotions in a common embedding space by considering both general emotional categories and fine-grained discrimination within each category. Since the association of music samples with emotions is uncertain due to subjective human perceptions, we compute composite loss-based embeddings obtained to maximise two statistical characteristics, one being the correlation between music samples and emotions based on canonical correlation analysis, and the other being a probabilistic similarity between a music sample and an emotion with KL-divergence. The experiments on two benchmark datasets demonstrate the effectiveness of our embedding-based approach, the composite loss and learned acoustic features. In addition, detailed analysis shows that our approach can accomplish robust bidirectional music emotion recognition that not only identifies music samples matching with a specific emotion but also detects emotions expressed in a certain music sample.
Most music emotion recognition approaches use one-way classification or regression that estimates a general emotion from a distribution of music samples, but without considering emotional variations (e.g., happiness can be further categorised into much, moderate or little happiness). We propose a cross-modal music emotion recognition approach that associates music samples with emotions in a common space by considering both of their general and specific characteristics. Since the association of music samples with emotions is uncertain due to subjective human perceptions, we compute composite loss-based embeddings obtained to maximise two statistical characteristics, one being the correlation between music samples and emotions based on canonical correlation analysis, and the other being a probabilistic similarity between a music sample and an emotion with KL-divergence. Experiments on two benchmark datasets demonstrate the superiority of our approach over one-way baselines. In addition, detailed analysis show that our approach can accomplish robust cross-modal music emotion recognition that not only identifies music samples matching with a specific emotion but also detects emotions expressed in a certain music sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.