A hydrogen sensor based on plasmonic metasurfaces is demonstrated to exhibit the industry-required 10 s reaction time and sensitivity. It consists of a layer of either Y or WO 3 sandwiched between a top Pd nanodisk and a Au mirror at the base. The phase change layer (Y, WO 3 ) reacts with hydrogen, and the corresponding change of the refractive index (permittivity) is detected by the spectral shift of the resonance dip in reflectance at the IR spectral window. This direct reflectance readout of the permittivity change due to hydrogen uptake is fast and is facilitated by radiation field enhancement extending into the phase change volume. Numerical modeling was used to elucidate the effects that real and imaginary parts of the refractive index exert on the spectral shifts of resonance. The mechanism of sensor performance is outlined, and a possibility to tune its spectral range of operation by the diameter of the Pd nanodisk and thickness of the phase change material makes this design applicable to other molecular detection applications including surfaceenhanced IR absorption.
Realisation of a perfect absorber A = 1 with transmittance and reflectance T = R = 0 by a thin metasurface is one of the hot topics in recent nanophotonics prompted by energy harvesting and sensor applications ( A + R + T = 1 is the energy conservation). Here we tested the optical properties of over 400 structures of metal–insulator–metal (MIM) metasurfaces for a range of variation in thickness of insulator, diameter of a disc and intra-disc distance both experimentally and numerically. Conditions of a near perfect absorption A > 95 % with simultaneously occurring anti-reflection property ( R < 5 % ) was experimentally determined. Differences between the bulk vs. nano-thin film properties at mid-IR of the used materials can be of interest for plasmonic multi-metal alloys and high entropy metals.
We demonstrate extraordinarily spectrally selective narrowband mid-infrared radiation absorbance and thermal emittance with resonant peak FWHM < 124nm at λ = 5.73 μm, corresponding to a Q-factor of ~ 92.3....
The four polarisation method is adopted for measurement of molecular orientation in dielectric nanolayers of metal-insulator-metal (MIM) metamaterials composed of gold nanodisks on polyimide and gold films. [...]
Detailed spectral analysis of radiation absorption and scattering behaviors of metasurfaces was carried out via finite-difference time-domain (FDTD) photonic simulations. It revealed that, for typical metal-insulator-metal (MIM) nanodisc metasurfaces, absorbance and scattering cross-sections exhibit a ratio of σabs/σsca = 1 at the absorption peak spectral position. This relationship was likewise found to limit the attainable photo-thermal conversion efficiency in experimental and application contexts. By increasing the absorption due to optical materials, such as Cr metal nano-films typically used as an adhesion layer, it is possible to control the total absorption efficiency η = σabs/σsca and to make it the dominant extinction mechanism. This guided the design of MIM metasurfaces tailored for near-perfect-absorption and emission of thermal radiation. We present the fabrication as well as the numerical and experimental spectral characterisation of such optical surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.