Knock-in embryonic stem (ES) cells, in which GFP or lacZ was expressed from the endogenous mouse vasa homolog (Mvh), which is specifically expressed in differentiating germ cells, were used to visualize germ cell production during in vitro differentiation. The appearance of MVH-positive germ cells depended on embryoid body formation and was greatly enhanced by the inductive effects of bone morphogenic protein 4-producing cells. The ES-derived MVH-positive cells could participate in spermatogenesis when transplanted into reconstituted testicular tubules, demonstrating that ES cells can produce functional germ cells in vitro. In vitro germ cell differentiation provides a paradigm for studying the molecular basis of germ line establishment, as well as for developing new approaches to reproductive engineering. G erm-line cells are responsible for transmitting genetic information and for reproducing totipotency from generation to generation. Pluripotent stem cell lines, embryonic stem (ES) cells, and embryonic germ cells are established from cells of the germ cell lineage. Therefore, germ cell specification must be linked to the maintenance of pluripotency, as well as to cell fate commitment leading to gametogenesis.Unlike many animal species, in which the germ line is predetermined by maternal factors, germ cell specification in mammals takes place at the onset of gastrulation, after implantation of the embryo. In the mouse, primordial germ cells (PGCs) are first distinguished at the base of the allantois in gastrulating embryos at embryonic day (E) 7.25 (1). Lineage studies of epiblast cells show that mouse PGCs are specified by inductive interactions at the onset of gastrulation (2, 3). Genetic analyses using targeted mutations have revealed that bone morphogenic protein (BMP) 4 and -8b, soluble growth factors belonging to the transforming growth factor  superfamily that are produced by extraembryonic ectoderm close to the boundary with the proximal epiblast, are required for the generation of PGCs from epiblast cells (4,5). Moreover, primary cultures of epiblast fragments from embryos at E5.5-E6.0 generate migrating PGCs when they are cocultured with extraembryonic ectoderm (6), and culturing of whole epiblasts from E6.0 embryos on feeder cells expressing both BMP4 and BMP8b gives rise to PGCs (7). These results reveal that BMPs derived from the extraembryonic ectoderm play crucial roles in PGC determination in the proximal epiblast.Despite such developments, it is not yet known how the founder population of PGCs is segregated from other pluripotent epiblast cells that form somatic cells. To approach this question, we examined the production of germ cells by an established pluripotent ES cell line. ES cells can form all cell lineages when introduced into host blastocysts and give rise to various somatic cell lineages in culture. However, it is not known whether they can generate the germ cell lineage in culture in the absence of the morphogenetic events associated with gastrulation. It has been difficult to addr...
To demonstrate the cellular and subcellular localization of mouse vasa homologue protein during germ cell development, specific antibody was raised against the full-length MVH protein. The immunohistochemical analyses demonstrated that MVH protein was exclusively expressed in primordial germ cells just after their colonization of embryonic gonads and in germ cells undergoing gametogenic processes until the post-meiotic stage in both males and females. The co-culture of EG cells with gonadal somatic cells indicated inductive MVH expression caused by an intercellular interaction with gonadal somatic cells. In adult testis, MVH protein was localized in the cytoplasm of spermatogenic cells, including chromatoid bodies in spermatids, known to be a perinuclear nuage structure which includes polar granules that contain VASA protein in Drosophila.
In mammals, the Y-linked sex-determining gene Sry cell-autonomously promotes Sertoli cell differentiation from bipotential supporting cell precursors through SRY-box containing gene 9 (Sox9), leading to testis formation. Without Sry action, the supporting cells differentiate into granulosa cells, resulting in ovarian development. However, how Sry acts spatiotemporally to switch supporting cells from the female to the male pathway is poorly understood. We created a novel transgenic mouse line bearing an inducible Sry transgene under the control of the Hsp70.3 promoter. Analysis of these mice demonstrated that the ability of Sry to induce testis development is limited to approximately 11.0-11.25 dpc, corresponding to a time window of only 6 hours after the normal onset of Sry expression in XY gonads. If Sry was activated after 11.3 dpc, Sox9 activation was not maintained, resulting in ovarian development. This time window is delimited by the ability to engage the high-FGF9/low-WNT4 signaling states required for Sertoli cell establishment and cord organization. Our results indicate the overarching importance of Sry action in the initial 6-hour phase for the female-to-male switching of FGF9/WNT4 signaling patterns.
ABSTRACT. Many vasa homologue genes to Drosophila vasa have been isolated in various animal species. They provide specific molecular probes to analyze the establishment and the differentiation of germ cell lineage. In mammals, the expression of VASA protein becomes detectable in PGCs at the late migrating stage. Interestingly, during spermatogenesis the intracellular localization of VASA protein is closely associated with the chromatoid body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.