These results suggest that inappropriate expression and activation of ENaC could be one of the underlying mechanisms by which Dahl salt-sensitive rats develop salt-sensitive hypertension and organ damage, and indicate a therapeutic benefit of amiloride in salt-sensitive hypertension where ENaC is excessively activated.
Prostasin, a glycosylphosphatidylinositol-anchored serine protease, regulates epithelial sodium channel (ENaC) activity. Sodium reabsorption through ENaC in distal nephron segments is a rate-limiting step in transepithelial sodium transport. Recently, proteolytic cleavage of ENaC subunits by prostasin has been shown to activate ENaC. Therefore, we hypothesized that serine protease inhibitors could inhibit ENaC activity in the kidney, leading to a decrease in blood pressure. We investigated the effects of camostat mesilate, a synthetic serine protease inhibitor, and FOY-251, an active metabolite of camostat mesilate, on sodium transport in the mouse cortical collecting duct cell line (M-1 cells) and on blood pressure in Dahl salt-sensitive rats. Treatment with camostat mesilate or FOY-251 decreased equivalent current (Ieq) in M-1 cells in a dose-dependent manner and inhibited the protease activity of prostasin in vitro. Silencing of the prostasin gene also reduced equivalent current in M-1 cells. The expression level of prostasin protein was not changed by application of camostat mesilate or FOY-251 to M-1 cells. Oral administration of camostat mesilate to Dahl salt-sensitive rats fed a high-salt diet resulted in a significant decrease in blood pressure with elevation of the urinary Na/K ratio, decrease in serum creatinine, reduction in urinary protein excretion, and improvement of renal injury markers such as collagen 1, collagen 3, transforming growth factor-beta1, and nephrin. These findings suggest that camostat mesilate can decrease ENaC activity in M-1 cells probably through the inhibition of prostasin activity, and that camostat mesilate can have beneficial effects on both hypertension and kidney injury in Dahl salt-sensitive rats. Camostat mesilate might represent a new class of antihypertensive drugs with renoprotective effects in patients with salt-sensitive hypertension.
Prostasin has been shown to regulate sodium handling in the kidney. Recently, a serine protease inhibitor, protease nexin-1 (PN-1), was identified as an endogenous inhibitor for prostasin. Therefore, we hypothesized that PN-1 may regulate sodium reabsorption by reducing prostasin activity, and that expression of PN-1 was regulated by transforming growth factor-beta1 (TGF-beta1) or aldosterone, like prostasin. cRNAs for epithelial sodium channel (ENaC), prostasin, and PN-1 were expressed in Xenopus oocytes, and the amiloride-sensitive sodium currents (I(Na)) were measured. The effect of TGF-beta1 and aldosterone on the mRNA and protein abundance of PN-1 and ENaC was detected by real-time polymerase chain reaction and immunoblotting in M-1 cells. Expression of PN-1 substantially decreased prostasin-induced I(Na) by approximately 68% in oocytes. Treatment of M-1 cells with 20 ng/ml TGF-beta1 significantly increased protein expression of PN-1 by 3.8+/-0.5-fold, whereas administration of 10(-6) M aldosterone markedly decreased protein expression of PN-1 to 53.7+/-6.7%. Basolateral, but not apical, application of TGF-beta1 significantly reduced I(eq). To elucidate the involvement of PN-1 in basal ENaC activity, we silenced the expression of PN-1 by using short-interfering RNA. This increased I(eq) by 1.6+/-0.1-fold. Our study indicates that PN-1 could have a natriuretic role by inhibiting prostasin activity and suggests the possibility that aldosterone and TGF-beta reciprocally regulate the expression of PN-1 in renal epithelial cells contributing to salt retention or natriuresis, respectively by an additional mechanism. PN-1 could represent a new factor that contributes to regulation of ENaC activity in the kidney.
Liddle's syndrome is an autosomal dominant form of salt-sensitive hypertension and has been shown to be caused by missense or frameshift mutations in the amiloride-sensitive epithelial sodium channel (ENaC), which is composed of three subunits: alpha, beta, and gamma. All disease mutations either remove or alter amino acids of the target proline-rich PPPxY sequence (PY motif) of beta- or gamma-ENaC and result in increased channel activity. In this report, we present a family with Liddle's syndrome whose abnormality is caused by a novel missense mutation, P616R, in the PY motif of the betaENaC. Functional studies using the P616R mutant expressed in Xenopus oocytes showed an approximately 6-fold increase in the amiloride-sensitive sodium channel activity compared with that of the wild type. These findings provide additional clinical evidence that a conserved PY motif is critically important for the regulation of ENaC activity.
To date, 11 loss of function mutations in the human urate transporter 1 (hURAT1) gene have been identified in subjects with idiopathic renal hypouricemia. In the present studies we investigated the clinical features and the mutations in the hURAT1 gene in seven families with presecretory reabsorption defect-type renal hypouricemia and in one family with the postsecretory reabsorption defect type. Twelve affected subjects and 26 family members were investigated. Mutations were analyzed by PCR and the direct sequencing method. Urate-transporting activities of wild-type and mutant hURAT1 were determined by [14C]urate uptake in Xenopus oocytes. Mutational analysis revealed three previously reported mutations (G774A, A1145T, and 1639-1643 del-GTCCT) and a novel mutation (T1253G) in families with the presecretory reabsorption defect type. Neither mutations in the coding region of hURAT1 gene nor significant segregation patterns of the hURAT1 locus were detected in the postsecretory reabsorption defect type. All hURAT1 mutants had significantly reduced urate-transporting activities compared with wild type (P < 0.05; n = 12), suggesting that T1253G is a loss of function mutation, and hURAT1 is responsible for the presecretory reabsorption defect-type familial renal hypouricemia. Future studies are needed to identify a responsible gene for the postsecretory reabsorption defect-type familial renal hypouricemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.