What ' s known on the subject? and What does the study add? A bone scan index (BSI) can quantify the extent of bone involvement and response to treatment, but it has not been widely accepted, because of its time-consuming nature.The study is the fi rst to demonstrate that automated BSI calculated with a computerassisted diagnosis system is effective in judging the chemotherapeutic response of bone metastatic lesions in patients with castration-resistant prostate cancer. OBJECTIVE• To evaluate the value of an automated bone scan index (aBSI), calculated using a computer-assisted diagnosis system, to indicate chemotherapy response and to predict prognosis in patients with castration-resistant prostate cancer (CRPC) with bone metastasis. PATIENTS AND METHODS• Forty-two consecutive CRPC patients underwent taxane-based chemotherapy between November 2004 and March 2011 at our institution.• The aBSIs were retrospectively calculated at the diagnosis of CRPC and 16 weeks after starting chemotherapy.• Cox proportional hazards regression models were applied to multivariate analyses with and without aBSI response in addition to the basic model.• Based on the difference in the concordance index (c-index) between each model, the prognostic relevance of adding the aBSI response was determined. RESULTS• A decrease in aBSI was found in 28 patients (66.7%), whereas a response was shown by bone scan in only 23.8% of patients.• Patients with a reduction in aBSI had longer overall survival (OS) in comparison with the other patients ( P = 0.0157).• Multivariate analysis without aBSI response showed that performance status ( P = 0.0182) and PSA response ( P = 0.0375) were signifi cant prognosticators.• By adding the aBSI response to this basic model, the prognostic relevance of the model was improved with an increase in the c-index from 0.621 to 0.660. CONCLUSIONS• The aBSI refl ected the chemotherapy response in bone metastasis.• The index detected small changes of bone metastasis response as quantifi ed values and was a strong prognostic indicator for patients with CRPC. KEYWORDScastration-resistant prostate cancer , bone scan , bone scan index , computer-assisted diagnosis , chemotherapy Study Type -Prognosis (case series) Level of Evidence 4
Docetaxel (DTX) is a useful chemotherapeutic drug for the treatment of hormone-refractory prostate cancer. However, emergence of DTX resistance has been a therapeutic hurdle. In this study, we investigated the effect of combining DTX with Bcl-2 family inhibitors using human prostate cancer cell lines (PC3, LNCaP, and DU145 cells). PC3 cells were less sensitive to DTX than were the other two cell lines. In contrast to ABT-199, which inhibits Bcl-2 and Bcl-w, both ABT-263 and ABT-737, which inhibit Bcl-2, Bcl-xL, and Bcl-w, significantly augmented the antitumor effect of DTX on PC3 cells. ABT-263 also enhanced the antitumor effect of DTX on a DTX-resistant PC3 variant cell line. The antitumor effect of ABT-263 was due mainly to its inhibitory effect on Bcl-xL. In a xenograft mouse model, DTX and ABT-737 combination therapy significantly inhibited PC3 tumor growth. Interestingly, although ABT-263 activated caspase-9 in PC3 cells, inhibition of caspase-9 unexpectedly promoted ABT-263-induced apoptosis in a caspase- 8-dependent manner. This augmented apoptosis was also observed in LNCaP cells. These findings indicate that Bcl-xL inhibition can sensitize DTX-resistant prostate cancer cells to DTX, and they reveal a unique apoptotic pathway in which antagonism of Bcl-2 family members in caspase-9-inhibited prostate cancer cells triggers caspase-8-dependent apoptosis.
The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biological pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis (P<0.001) and worse 5-year overall survival after radical nephrectomy (P=0.014). In vitro, VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNF-α, BID, and BAK. Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus, is an attractive target for novel diagnostic, prognostic and therapeutic strategies.
BackgroundCytochrome P450 1B1 (CYP1B1) has been shown to be up-regulated in many types of cancer including renal cell carcinoma (RCC). Several reports have shown that CYP1B1 can influence the regulation of tumor development; however, its role in RCC has not been well investigated. The aim of the present study was to determine the functional effects of CYP1B1 gene on tumorigenesis in RCC.MethodsExpression of CYP1B1 was determined in RCC cell lines, and tissue microarrays of 96 RCC and 25 normal tissues. To determine the biological significance of CYP1B1 in RCC progression, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses.ResultsFirst, we confirmed that CYP1B1 protein expression was significantly higher in RCC cell lines compared to normal kidney tissue. This trend was also observed in RCC samples (p < 0.01). Interestingly, CYP1B1 expression was associated with tumor grade and stage. Next, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses to determine the biological significance of CYP1B1 in RCC progression. Inhibition of CYP1B1 expression resulted in decreased cell proliferation, migration and invasion of RCC cells. In addition, reduction of CYP1B1 induced cellular apoptosis in Caki-1. We also found that these anti-tumor effects on RCC cells caused by CYP1B1 depletion may be due to alteration of CDC20 and DAPK1 expression based on gene microarray and confirmed by real-time PCR. Interestingly, CYP1B1 expression was associated with CDC20 and DAPK1 expression in clinical samples.ConclusionsCYP1B1 may promote RCC development by inducing CDC20 expression and inhibiting apoptosis through the down-regulation of DAPK1. Our results demonstrate that CYP1B1 can be a potential tumor biomarker and a target for anticancer therapy in RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.