During collective migration of epithelial cells, the migration direction is aligned over a large, tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback in individual cells yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and the ERK activation triggers cell contraction. In addition, the contraction of the activated cell pulls neighboring cells via cell-cell junctions, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear cell polarization guarantees unidirectional propagation of ERK activation waves, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.
Collective cell migration offers a rich field of study for non-equilibrium physics and cellular biology, revealing phenomena such as glassy dynamics [1], pattern formation [2] and active turbulence [3]. However, how mechanical and chemical signaling are integrated at the cellular level to give rise to such collective behaviors remains unclear. We address this by focusing on the highly conserved phenomenon of spatio-temporal waves of density [2,[4][5][6][7][8] and ERK/MAPK activation [9-11], which appear both in vitro and in vivo during collective cell migration and wound healing. First, we propose a biophysical theory, backed by mechanical and optogenetic perturbation experiments, showing that patterns can be quantitatively explained by a mechano-chemical coupling between three-dimensional active cellular tensions and the mechano-sensitive ERK/MAPK pathway. Next, we demonstrate how this biophysical mechanism can robustly induce migration in a desired orientation, and we determine a theoretically optimal pattern for inducing efficient collective migration fitting well with experimentally observed dynamics. We thereby provide a bridge between the biophysical origin of spatio-temporal instabilities and the design principles of robust and efficient long-ranged migration.
During collective migration of epithelial cells, the migration direction is aligned over a large, tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback in individual cells yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and the ERK activation triggers cell contraction. In addition, the contraction of the activated cell pulls neighboring cells via cell-cell junctions, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear cell polarization guarantees unidirectional propagation of ERK activation waves, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.
Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)–deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.