Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.
Barnacle attachment to various foreign materials in water is guided by an extracellular multiprotein complex. A 19 kDa cement protein was purified from the Megabalanus rosa cement, and its cDNA was cloned and sequenced. The gene was expressed only in the basal portion of the animal, where the histologically identified cement gland is located. The sequence of the protein showed no homology to other known proteins in the databases, indicating that it is a novel protein. Agreement between the molecular mass determined by MS and the molecular weight estimated from the cDNA indicated that the protein bears no post‐translational modifications. The bacterial recombinant was prepared in soluble form under physiologic conditions, and was demonstrated to have underwater irreversible adsorption activity to a variety of surface materials, including positively charged, negatively charged and hydrophobic ones. Thus, the function of the protein was suggested to be coupling to foreign material surfaces during underwater attachment. Homologous genes were isolated from Balanus albicostatus and B. improvisus, and their amino acid compositions showed strong resemblance to that of M. rosa, with six amino acids, Ser, Thr, Ala, Gly, Val and Lys, comprising 66–70% of the total, suggesting that such a biased amino acid composition may be important for the function of this protein.
Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serinearginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of agerelated macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF.
Sulfonylureas are widely used drugs for treating insulin deficiency in patients with type 2 diabetes. Sulfonylureas bind to the regulatory subunit of the pancreatic β cell potassium channel that controls insulin secretion. Sulfonylureas also bind to and activate Epac2A, a member of the Epac family of cyclic adenosine monophosphate (cAMP)-binding proteins that promote insulin secretion through activation of the Ras-like guanosine triphosphatase Rap1. Using molecular docking simulation, we identified amino acid residues in one of two cyclic nucleotide-binding domains, cNBD-A, in Epac2A predicted to mediate the interaction with sulfonylureas. We confirmed the importance of the identified residues by site-directed mutagenesis and analysis of the response of the mutants to sulfonylureas using two assays: changes in fluorescence resonance energy transfer (FRET) of an Epac2A-FRET biosensor and direct sulfonylurea-binding experiments. These residues were also required for the sulfonylurea-dependent Rap1 activation by Epac2A. Binding of sulfonylureas to Epac2A depended on the concentration of cAMP and the structures of the drugs. Sulfonylureas and cAMP cooperatively activated Epac2A through binding to cNBD-A and cNBD-B, respectively. Our data suggest that sulfonylureas stabilize Epac2A in its open, active state and provide insight for the development of drugs that target Epac2A.
Metabolome analysis is a systematic chemical analysis of metabolites, which may be used to investigate the metabolic activity in the cell. Capillary electrophoresis (CE) is one of the most promising techniques for the metabolome analysis, because it gives high-resolution separations in a reasonable time and requires a minimum amount of samples. General characteristics of CE are discussed from the viewpoint of metabolome analysis. Micellar electrokinetic chromatography (MEKC), a separation mode of CE, enables the separation of neutral analytes by using micelles as pseudostationary phases. MEKC is also powerful for the separation of ionic analytes to improve selectivity. To solve relatively poor concentration sensitivity with UV absorbance detection, on-line sample preconcentration techniques were developed resulting in up to few thousand-fold increases in sensitivity. Laser-induced fluorescence detection is another solution to increase concentration sensitivity, but most analytes are not natively fluorescent. Therefore, several derivatization reactions were performed to selectively detect a class of analytes with high sensitivity. Some preliminary results are shown with formic acid extracts of Bacillus subtilis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.