SUMMARY Intertidal mudflats are highly productive ecosystems that impose severe environmental challenges on their occupants due to tidal oscillations and extreme shifts in habitat conditions. Reproduction on mudflats requires protection of developing eggs from thermal and salinity extremes,O2 shortage, dislodgement by currents, siltation and predation. Mudskippers are air-breathing, amphibious fishes, and one of few vertebrates that reside on mudflats. They lay their eggs in mud burrows containing extremely hypoxic water, raising the question of how the eggs survive. We found that the Japanese mudskipper Periophthalmus modestus deposits its eggs on the walls of an air-filled chamber within its burrow. To ensure adequate O2 for egg development, the burrow-guarding male mudskipper deposits mouthfuls of fresh air into the egg chamber during each low tide, a behaviour that can be upregulated by egg-chamber hypoxia. When egg development is complete the male, on a nocturnal rising tide, removes the egg-chamber air and releases it outside the burrow. This floods the egg chamber and induces egg hatching. Thus, P. modestus has developed a reproductive strategy that allows it to nurture eggs in this severe habitat rather than migrating away from the mudflat. This requires that mudskipper eggs be specialized to develop in air and that the air-breathing capacity of the egg-guarding male be integrated in a complex behavioural repertoire that includes egg guarding, ferrying air to and from the egg chamber, and sensing O2 levels therein, all in concert with the tidal cycle.
A population of the Australian mudskipper, Periophthalmus minutus, was found to inhabit mudflat that remained uncovered by tide for more than 20 days in some neap tides. During these prolonged emersion periods, P. minutus retreated into burrows containing little water, with a highest recorded salinity of 84 ± 7.4 psu (practical salinity unit). To explore the mechanical basis for this salinity tolerance in P. minutus, we determined the densities of mitochondria-rich cells (MRCs) in the inner and outer opercula and the pectoral fin skin, in comparison with P. takita, [corrected] from an adjacent lower intertidal habitat, and studied morphological responses of MRCs to exposure to freshwater (FW), and 100% (34-35 psu) and 200% seawater (SW). Periophthalmus minutus showed a higher density of MRCs in the inner operculum (3365 ± 821 cells mm(-2)) than in the pectoral fin skin (1428 ± 161) or the outer operculum (1100 ± 986), all of which were higher than the MRC densities in p. takita. [corrected]. No mortality occurred in 100% or 200% SW, but half of the fish died within four days in FW. Neither 200% SW nor FW exposure affected MRC density. Transfer to 200% SW doubled MRC size after 9-14 days with no change in the proportion of MRCs with apical pits or plasma sodium concentration. In contrast, transfer to FW resulted in a rapid closing of pits and a significant reduction in plasma sodium concentration. These results suggest that P. minutus has evolved morphological and physiological mechanisms to withstand hypersaline conditions that they may encounter in their habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.