Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.
Infection with Helicobacter pylori cagA-positive strains is associated with gastric adenocarcinoma. Intestinal metaplasia is a precancerous lesion of the stomach characterized by transdifferentiation of the gastric mucosa to an intestinal phenotype. The H. pylori cagA gene product, CagA, is delivered into gastric epithelial cells, where it undergoes tyrosine phosphorylation by Src family kinases. Tyrosine-phosphorylated CagA specifically binds to and activates SHP-2 phosphatase, thereby inducing cell-morphological transformation. We report here that CagA physically interacts with E-cadherin independently of CagA tyrosine phosphorylation. The CagA/E-cadherin interaction impairs the complex formation between E-cadherin and b-catenin, causing cytoplasmic and nuclear accumulation of b-catenin. CagA-deregulated b-catenin then transactivates b-catenin-dependent genes such as cdx1, which encodes intestinal specific CDX1 transcription factor. In addition to b-catenin signal, CagA also transactivates p21 WAF1/Cip1 , again, in a phosphorylation-independent manner. Consequently, CagA induces aberrant expression of an intestinal-differentiation marker, goblet-cell mucin MUC2, in gastric epithelial cells that have been arrested in G1 by p21 WAF1/Cip1 . These results indicate that perturbation of the E-cadherin/b-catenin complex by H. pylori CagA plays an important role in the development of intestinal metaplasia, a premalignant transdifferentiation of gastric epithelial cells from which intestinal-type gastric adenocarcinoma arises.
When delivered into gastric epithelial cells via type IV secretion, Helicobacter pylori CagA perturbs host cell signaling and thereby promotes gastric carcinogenesis. However, the mechanisms of CagA delivery, localization, and action remain poorly understood. We show that direct contact of H. pylori with epithelial cells induces externalization of the inner leaflet enriched host phospholipid, phosphatidylserine, to the outer leaflet of the host plasma membrane. CagA, which is exposed on the bacterial surface via type IV secretion, interacts with the externalized phosphatidylserine to initiate its entry into cells. CagA delivery also requires energy-dependent host cell processes distinct from known endocytic pathways. Within polarized epithelial cells, CagA is tethered to the inner leaflet of the plasma membrane through interaction with phosphatidylserine and binds the polarity-regulating host kinase PAR1/MARK to induce junctional and polarity defects. Thus, host membrane phosphatidylserine plays a key role in the delivery, localization, and pathophysiological action of CagA.
Helicobacter pylori contributes to the development of peptic ulcers and atrophic gastritis. Furthermore, H. pylori strains carrying the cagA gene are more virulent than cagA-negative strains and are associated with the development of gastric adenocarcinoma. The cagA gene product, CagA, is translocated into gastric epithelial cells and localizes to the inner surface of the plasma membrane, in which it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif. Tyrosine-phosphorylated CagA specifically binds to and activates Src homology 2-containing protein-tyrosine phosphatase-2 (SHP-2) at the membrane, thereby inducing an elongated cell shape termed the hummingbird phenotype. Accordingly, membrane tethering of CagA is an essential prerequisite for the pathogenic activity of CagA. We show here that membrane association of CagA requires the EPIYA-containing region but is independent of EPIYA tyrosine phosphorylation. We further show that specific deletion of the EPIYA motif abolishes the ability of CagA to associate with the membrane. Conversely, reintroduction of an EPIYA sequence into a CagA mutant that lacks the EPIYA-containing region restores membrane association of CagA. Thus, the presence of a single EPIYA motif is necessary for the membrane localization of CagA. Our results indicate that the EPIYA motif has a dual function in membrane association and tyrosine phosphorylation, both of which are critically involved in the activity of CagA to deregulate intracellular signaling, and suggest that the EPIYA motif is a crucial therapeutic target of cagA-positive H. pylori infection.
We have developed a new strategy for the evaluation of the mutagenicity of a damaged DNA precursor (deoxyribonucleoside 5-triphosphate) in Escherichia coli. 8-Hydroxydeoxyguanosine triphosphate (8-OH-dGTP) and 2-hydroxydeoxyadenosine triphosphate (2-OHdATP) were chosen for this study because they appear to be formed abundantly by reactive oxygen species in cells. We introduced the oxidatively damaged nucleotides into competent E. coli and selected mutants of the chromosomal lacI gene. Both damaged nucleotides induced lacI gene mutations in a dose-dependent manner, whereas unmodified dATP and dGTP did not appear to elicit the mutations. The addition of 50 nmol of 8-OHdGTP and 2-OH-dATP into an E. coli suspension induced 12-and 9-fold more substitution mutations than the spontaneous event, respectively. The 8-OH-dGTP induced A⅐T 3 C⅐G transversions, and the 2-OH-dATP elicited G⅐C 3 T⅐A transversions. These results indicate that the two oxidatively damaged nucleotides are mutagenic in vivo and suggest that 8-OH-dGTP and 2-OH-dATP were incorporated opposite A and G residues, respectively, in the E. coli DNA. This new method enables the evaluation and comparison of the mutagenic potentials of damaged DNA precursors in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.