Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species.
Zearalenone (ZEN) is converted into a far less oestrogenic product by incubation with Clonostachys rosea IFO 7063. An alkaline hydrolase responsible for the detoxification was purified to homogeneity from the fungus by a combination of salt precipitation and column chromatography methods. The purified enzyme was homodimeric with a subunit molecular mass of 30 kDa and contained an intra-subunit disulphide bridge. On the basis of the internal peptide sequences of the purified protein, we cloned the entire coding region of the gene (designated as zhd101) by PCR techniques. The ZEN degradation activity was detected in heterologous hosts (Schizosaccharomyces pombe and Escherichia coli) carrying the cloned gene. Zhd101 could be a promising genetic resource for in planta detoxification of the mycotoxin in important crops.
Zearalenone (ZEN) is converted to a nontoxic product by a lactonohydololase encoded by zhd101. An enhanced green fluorescent protein (EGFP) gene was fused to zhd101 (i.e., egfp::zhd101) and expressed in Escherichia coli. Both recombinant ZHD101 and EGFP::ZHD101 were purified to homogeneity and characterized. Maximal activity of ZHD101 toward ZEN was measured at approximately 37 to 45°C and pH 10.5 (k cat at 30°C, 0.51 s ؊1 ). The enzyme was irreversibly inactivated at pH values below 4.5 or by treatment with serine protease inhibitors. ZHD101 was also active against five ZEN cognates, although the efficiencies were generally low; e.g., the k cat was highest with zearalanone (1.5 s ؊1 ) and lowest with -zearalenol (0.075 s ؊1 ). EGFP:: ZHD101 had properties similar to those of the individual proteins with regard to the EGFP fluorescence and lactonohydrolase activity. Fortuitously, EGFP::ZHD101 exhibited a good correlation between the fluorescence intensity and reaction velocity under various pH conditions. We therefore used egfp::zhd101 to visually monitor the lactonohydrolase activity in genetically modified organisms and evaluated the usefulness of zhd101 for in vivo detoxification of ZEN. While recombinant E. coli and transgenic rice calluses exhibited strong EGFP fluorescence and completely degraded ZEN in liquid media, recombinant Saccharomyces cerevisiae gave poor fluorescence and did not eliminate all the toxicity of the mycotoxin in the medium; i.e., the rest of ZEN was transformed into an unfavorable substrate, -zearalenol, by an as-yet-unidentified reductase and remained in the medium. Even so, as much as 75% of ZEN was detoxified by the yeast transformant, which is better than the detoxification system in which food-grade Lactobacillus strains are used (H. El-Nezami, N. Polychronaki, S. Salminen, and H. Mykkuäne, Appl. Environ. Microbiol. 68: [3545][3546][3547][3548][3549] 2002). An appropriate combination of a candidate host microbe and the codon-optimized synthetic gene may contribute significantly to establishing a mycotoxin detoxification system for food and feed.Zearalenone (ZEN), 6-(10-hydroxy-6-oxo-trans-1-undecenyl)--resorcylic acid lactone (Fig. 1), is a nonsteroid estrogenic mycotoxin that is produced by numerous Fusarium species in pre-or postharvest cereals (22). Under environmental conditions favorable for fungal growth, high levels of ZEN are frequently found in maize and other small grains, such as wheat and barley. The keto group at C-6Ј is reduced to a more estrogenic compound, ␣-zearalenol, and/or its stereoisomeric cognate -zearalenol (which has less estrogenicity than ZEN) by various microorganisms, including industrial yeast strains (4) and animal intestinal microbes (13). These mycotoxins have adverse health effects on various animals that ingest moldinfected cereals and cereal-derived food products (16).ZEN causes severe morphological and functional disorders of reproductive organs in livestock, especially female swine (7). In feeding experiments with female swine, clear clin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.