Semaphorin III/collapsin-1 (Sema3A) guides a specific subset of neuronal growth cones as a repulsive molecule. In this study, we have investigated a possible role of non-neuronal Sema3A in lung morphogenesis. Expression of mRNAs of Sema3A and neuropilin-1 (NP-1), a Sema3A receptor, was detected in fetal and adult lungs. Sema3A-immunoreactive cells were found in airway and alveolar epithelial cells of the fetal and adult lungs. Immunoreactivity for NP-1 was seen in fetal and adult alveolar epithelial cells as well as endothelial cells. Immunoreactivity of collapsin response mediator protein CRMP (CRMP-2), an intracellular protein mediating Sema3A signaling, was localized in alveolar epithelial cells, nerve tissue and airway neuroendocrine cells. The expression of CRMP-2 increased during the fetal, neonate and adult periods, and this pattern paralleled that of NP-1. In a two-day culture of lung explants from fetal mouse lung (E11.5), with exogenous Sema3A at a dose comparable to that which induces growth cone collapse of dorsal root ganglia neurons, the number of terminal buds was reduced in a dose-dependent manner when compared with control or untreated lung explants. This decrease was not accompanied with any alteration of the bromodeoxyuridine-positive DNA-synthesizing fraction. A soluble NP-1 lacking the transmembrane and intracellular region, neutralized the inhibitory effect of Sema3A. The fetal lung explants from neuropilin-1 homozygous null mice grew normally in vitro regardless of Sema3A treatment. These results provide evidence that Sema3A inhibits branching morphogenesis in lung bud organ cultures via NP-1 as a receptor or a component of a possible multimeric Sema3A receptor complex.
We examined the hypothesis that superoxide mediates infiltration of neutrophils to the airways through nuclear factor (NF)-kappaB and interleukin-8 (IL-8) after acute exposure to cigarette smoke (CS) in vivo. Male Hartley strain guinea pigs were exposed to air or 20 puffs of CS and killed 5 h after the exposure. The differential cell count of bronchoalveolar lavage fluid and specific myeloperoxidase enzyme assay demonstrated that acute exposure to CS caused neutrophil accumulation to the airways and parenchyma, respectively. Acute exposure to CS increased DNA-binding activity of NF-kappaB in the lung. Acute exposure to CS also increased IL-8 messenger RNA (mRNA) expression in the lung. Pretreatment of guinea pigs with recombinant human superoxide dismutase (rhSOD) aerosols reduced the CS-induced neutrophil accumulation to the airways. Both activation of NF-kappaB and increased IL-8 mRNA expression were also inhibited by the pretreatment of rhSOD aerosols. Strong immunoreactivities for p65 and p50 were detected in the nuclei of alveolar macrophages after acute exposure to CS. The signal for IL-8 mRNA expression was demonstrated in the alveolar space after acute exposure to CS. Neither significant immunoreactivities for p65 and p50 nor IL-8 mRNA signals were observed in airway epithelium. These observations suggest that acute exposure to CS initiates superoxide-dependent mechanism that, through NF-kappaB activation and IL-8 mRNA expression, produces infiltration of neutrophils to the airways in vivo. It was also suggested that the alveolar macrophage is one potential source of NF-kappaB activation and IL-8 mRNA expression after acute exposure to CS.
Neocortical gamma-aminobutyric acid (GABA)ergic neurons have been previously described as largely involved in local intracortical circuitry. However, our recent findings in the murine model described select neocortical GABAergic neurons that project to both neighboring and more distant neocortical regions. Here, we investigated whether such GABAergic projection neurons are also found in the cat neocortex. Wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the visual, auditory, or somatosensory cortex, in order to label efferent cortical neurons retrogradely and to label axons and terminals orthogradely. Staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), an enzyme involved in nitric oxide synthesis, was employed, and co-localization with WGA-HRP was determined by means of both polarizing and brightfield microscopy. We concluded that neurons double-labeled with WGA-HRP and NADPH-d in a distant region from the WGA-HRP-injection site are GABAergic neurons with long-range projection axons. All double-labeled neurons were found in cortical layers VIa and VIb and in the white matter. Neurons with intense NADPH-d reactivity (type I) were determined to be neuronal nitric oxide synthase (nNOS) positive in all cases. However, weakly NADPH-d-reactive neurons (type II) lacked nNOS immunoreactivity. Moreover, nNOS often co-localized with GABA, neuropeptide-Y, and somatostatin in the cat neocortex. In summary, the GABAergic neurons described here projected in a manner similar to that previously described for neocortical principal neurons, although some unique GABAergic long-range projections were also demonstrated.
Small cell lung cancer (SCLC) is one of the most malignant neoplasms in common human cancers. The tumor is composed of small immature-looking cells with a round or fusiform shape, which possesses weak adhesion features among them, suggesting that SCLC shows the morphological characteristics of epithelial to mesenchymal transition (EMT). SCLC is characterized by high metastatic and recurrent rates, sensitivity to the initial chemotherapy, and easy acquirement of chemoresistance afterwards. These characters may be related to the EMT phenotype of SCLC. Notch signaling is an important signaling pathway, and could have roles in regulating neuroendocrine differentiation, proliferation, cell adhesion, EMT, and chemoresistance. Notch1 is usually absent in SCLC in vivo, but could appear after chemotherapy. Notch1 can enhance cell adhesion by induction of E-cadherin in SCLC, which indicates mesenchymal to epithelial transition. On the other hand, achaete-scute complex homologue 1 (ASCL1), negatively regulated by Notch signaling, is a lineage-specific gene of SCLC, and functions to promote neuroendocrine differentiation as well as EMT. ASCL1-transfected adenocarcinoma cell lines induced neuroendocrine phenotypes and lost epithelial cell features. SCLC is characterized by neuroendocrine differentiation and EMT-like features, which could be produced by inactive Notch signaling and ASCL1 expression. In addition, chemical and radiation treatments can activate Notch signaling, which suppress neuroendocrine differentiation and induces chemoradioresistance, accompanied by secession from EMT. Thus, the status of Notch signaling and ASCL1 expression may determine the cell behaviors of SCLC partly through modifying EMT phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.