Atlantoaxial instability (AAI)/subluxation commonly occurs in small breed dogs. Ventral stabilization techniques using screws and/or pins and a plate or, more commonly, polymethylmethacrylate are considered to provide the most favorable outcome. However, the implantation of screws of sufficient sizes for long-term stability becomes challenging in toy breed dogs (e.g. <2 kg). We herein report the application of 3D printing technology to implant trajectory planning and implant designing for the surgical management of AAI in 18 dogs. The use of our patient-specific drill guide templates resulted in overall mean screw corridor deviations of less than 1 mm in the atlas and axis, which contributed to avoiding iatrogenic injury to the surrounding structures. The patient-specific titanium plate was effective for stabilizing the AA joint and provided clinical benefits to 83.3% of cases (15/18). Implant failure requiring revision surgery occurred in only one case, and the cause appeared to be related to the suboptimal screw-plate interface. Although further modifications are needed, our study demonstrated the potential of 3D printing technology to be effectively applied to spinal stabilization surgeries for small breed dogs, allowing for the accurate placement of screws and minimizing peri- and postoperative complications, particularly at anatomical locations at which screw corridors are narrow and technically demanding.
A 12-week-old female Wire-haired miniature dachshund presented with non-progressive ataxia and hypermetria. Due to the animal’s clinical history and symptoms, cerebellar malformations were suspected. Computed tomography (CT) and magnetic resonance imaging (MRI) detected bilateral ventriculomegaly, dorsal displacement of the cerebellar tentorium, a defect in the cerebellar tentorium and a large fluid-filled cystic structure that occupied the regions where the cerebellar vermis and occipital lobes are normally located. The abovementioned cystic structure and the defect in the cerebellar tentorium were comparable to those seen in humans with Dandy-Walker syndrome. However, the presence of the cystic structure in the occipital lobe region was unique to the present case. During necropsy, the MRI findings were confirmed, but the etiology of the condition was not determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.