Interleukin (IL)-23 is an essential cytokine involved in expansion of the Th17 lineage, which is associated with many immune-related destructive tissue diseases. We hypothesized that the IL-23-induced Th17 pathway plays a role in periodontal pathology and examined the expression of cytokines, and related molecules, in periodontal lesions and control sites. IL-23 and IL-12 were expressed at significantly higher levels in periodontal lesions than in control sites. However, the relative expression of the IL-23 receptor compared with the IL-12 receptor beta2 was significantly higher in periodontal lesions. Moreover, IL-17 expression was significantly higher in periodontal lesions, especially in the tissue adjacent to bone destruction, than in control sites. There was no significant difference in the expression levels of IFN-gamma, an important cytokine inhibiting differentiation toward the Th17 pathway, between periodontal lesions and control sites. Together, these results suggest that the IL-23-induced Th17 pathway is stimulated in inflammatory periodontal lesions.
Nicotinic acetylcholine receptors containing alpha7 subunits are widely distributed in the vertebrate nervous system. In the chick ciliary ganglion such receptors generate large synaptic currents but appear to be excluded from postsynaptic densities on the cells. We show here that alpha7-containing receptors are concentrated on somatic spines in close proximity to putative sites of presynaptic transmitter release. Intermediate voltage electron microscopy on thick sections, together with tomographic reconstruction, permitted three-dimensional analysis of finger-like projections emanating from cell bodies. The projections were identified as spines based on their morphology, cytoskeletal content, and proximity to presynaptic elements. Both in situ and after ganglionic dissociation, the spines were grouped on the cell surface and tightly folded into mats. Immunogold labeling of receptors containing alpha7 subunits showed them to be preferentially concentrated on the somatic spines. Postsynaptic densities were present in vivo both on the soma near spines and occasionally on the spines themselves. Synaptic vesicle-filled projections from the presynaptic calyx were interdigitated among the spines. Moreover, the synaptic vesicles often abutted the membrane and sometimes included Omega profiles as if caught in an exocytotic event, even when no postsynaptic densities were juxtaposed on the spine. The results suggest several mechanisms for delivering transmitter to alpha7-containing receptors, and they support new ideas about synaptic signaling via spines. They also indicate that neurons must have specific mechanisms for targeting alpha7-containing receptors to desired locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.