An anti-human interleukin 5 receptor (hIL-5R) humanized immunoglobulin G1 (IgG1) and an anti-CD20 chimeric IgG1 produced by rat hybridoma YB2/0 cell lines showed more than 50-fold higher antibody-dependent cellular cytotoxicity (ADCC) using purified human peripheral blood mononuclear cells as effector than those produced by Chinese hamster ovary (CHO) cell lines. Monosaccharide composition and oligosaccharide profiling analysis showed that low fucose (Fuc) content of complex-type oligosaccharides was characteristic in YB2/0-produced IgG1s compared with high Fuc content of CHO-produced IgG1s. YB2/0-produced anti-hIL-5R IgG1 was subjected to Lens culinaris aggulutin affinity column and fractionated based on the contents of Fuc. The lower Fuc IgG1 had higher ADCC than the IgG1 before separation. In contrast, the content of bisecting GlcNAc of the IgG1 affected ADCC much less than that of Fuc. In addition, the correlation between Gal and ADCC was not observed. When the combined effect of Fuc and bisecting GlcNAc was examined in anti-CD20 IgG1, only a severalfold increase of ADCC was observed by the addition of GlcNAc to highly fucosylated IgG1. Quantitative PCR analysis indicated that YB2/0 cells had lower expression level of FUT8 mRNA, which codes ␣1,6-fucosyltransferase, than CHO cells. Overexpression of FUT8 mRNA in YB2/0 cells led to an increase of fucosylated oligosaccharides and decrease of ADCC of the IgG1. These results indicate that the lack of fucosylation of IgG1 has the most critical role in enhancement of ADCC, although several reports have suggested the importance of Gal or bisecting GlcNAc and provide important information to produce the effective therapeutic antibody. Antibody-dependent cellular cytotoxicity (ADCC),1 a lytic attack on antibody-targeted cells, is triggered upon binding of lymphocyte receptors (Fc␥Rs) to the constant region (Fc) of the antibodies. ADCC is considered to be a major function of some of the therapeutic antibodies, although antibodies have multiple therapeutic functions (e.g. antigen binding, induction of apoptosis, and complement-dependent cellular cytotoxicity) (1, 2).One IgG molecule contains two N-linked oligosaccharide sites in its Fc region (3). The general structure of N-linked oligosaccharide on IgG is complex-type, characterized by a mannosyl-chitobiose core (Man3GlcNAc2-Asn) with or without bisecting GlcNAc/L-fucose (Fuc) and other chain variants including the presence or absence of Gal and sialic acid. In addition, oligosaccharides may contain zero (G0), one (G1), or two (G2) Gal.Recent studies have shown that engineering the oligosaccharides of IgGs may yield optimized ADCC. ADCC requires the presence of oligosaccharides covalently attached at the conserved Asn 297 in the Fc region and is sensitive to change in the oligosaccharide structure. In the oligosaccharide, sialic acid of IgG has no effect on ADCC (4). The relationship between the Gal residue and ADCC is controversial. Boyd et al. (4) have shown that obvious change was not found in ADCC after removal of ...
The Poales (which include the grasses) and Asparagales [which include onion (Allium cepa L.) and other Allium species] are the two most economically important monocot orders. Enormous genomic resources have been developed for the grasses; however, their applicability to other major monocot groups, such as the Asparagales, is unclear. Expressed sequence tags (ESTs) from onion that showed significant similarities (80% similarity over at least 70% of the sequence) to single positions in the rice genome were selected. One hundred new genetic markers developed from these ESTs were added to the intraspecific map derived from the BYG15-23xAC43 segregating family, producing 14 linkage groups encompassing 1,907 cM at LOD 4. Onion linkage groups were assigned to chromosomes using alien addition lines of Allium fistulosum L. carrying single onion chromosomes. Visual comparisons of genetic linkage in onion with physical linkage in rice revealed scant colinearity; however, short regions of colinearity could be identified. Our results demonstrate that the grasses may not be appropriate genomic models for other major monocot groups such as the Asparagales; this will make it necessary to develop genomic resources for these important plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.