Studies of human movement usually collect data from multiple repetitions of a task and use the average of all movement trials to approximate the typical kinematics or kinetics pattern for each individual. Few studies report the expected accuracy of these estimated mean kinematics or kinetics waveforms for each individual. The purpose of this study is to demonstrate how simultaneous confidence bands, which is an approach to quantify uncertainty across an entire waveform based on limited data, can be used to calculate margin of error (MOE) for waveforms. Bilateral plantar pressure data were collected from 70 participants as they walked over 4 surfaces for an average of at least 300 steps per surface. The relationship between MOE and the number of steps included in the analysis was calculated using simultaneous confidence bands, and 3 methods commonly used for pointwise estimates: intraclass correlation, sequential averaging, and T-based MOE. The conventional pointwise approaches underestimated the number of trials required to estimate biomechanical waveforms within a desired MOE. Simultaneous confidence bands are an objective approach to more accurately estimate the relationship between the number of trials collected and the MOE in estimating typical biomechanical waveforms.
Background Hip microinstability is an increasingly recognized source of pain and dysfunction but has no agreed upon diagnostic criteria and the pathophysiology remains unclear. It has been suggested that pain associated with microinstability is caused by excess translation of the femoral head. Recent research indicates that single-plane femoral head translation can be reliably measured using dynamic ultrasonography during a supine clinical examination; however, the overall accuracy of that technique has not been established, and the range of femoral head translation values that are found in individuals with no history of surgery or symptomatic pathology is unknown.Questions/purposes (1) How much femoral head translation is present in native, uninjured hips during a weightbearing apprehension position for females and males? (2) How large is the side-to-side difference in hip translation and rotation within the same individual in females and males with no history of surgery or pain during the weightbearing apprehension position? (3) What differences exist in femoral head translation and rotation when comparing females to males? Methods Twenty-two young adults (11 males, 11 females; mean age 22 6 2 years; BMI 22 6 5 kg/m 2 ) with no history of hip pain, no known hip injury, and who never had hip surgery participated in this study. High-resolution CT images of the femur and pelvis were acquired for each participant, and the bone tissue was segmented from the CT volume. Synchronized biplane radiographs were collected during a neutral standing trial and during a static weightbearing apprehension position in which the participant extended, externally rotated, and abducted at their back hip while standing with their feet split in the AP direction. A validated volumetric model-based tracking technique was used to match the patient-specific bone models to the biplane radiographs with an accuracy of 0.3 mm for translation and 0.8°for rotation. Translation of the center of the femoral head relative to the center of the acetabulum and rotation of the femur relative to the pelvis from neutral to the weightbearing apprehension position were calculated. Sex-based differences in hip kinematics were assessed by bivariate linear regression. Results The median (range) translation during the weightbearing apprehension position in females was 0.9 mm (0.2 to 2.7 mm), which was less than in the 1.3 mm (0.2 to 2.6 mm) translation found in males (median difference of 0.5 mm; p = 0.04). The median absolute side-to-side difference in translation during the pivot was 1.4 mm (0.1 to 3.8 mm) in females and 1.3 mm (0.1 to 4.4 mm) in males.One of the authors (MM) certifies receipt of personal payments or benefits, during the study period, in an amount of less than USD 10,000 from Elizur, LLC. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request. Ethical approval for this study was obtained from the University of Pit...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.