A new tumor suppressor gene PTEN/MMAC1 was recently isolated at chromosome 10q23 and found to be inactivated by point mutation or homozygous deletion in glioma, prostate and breast cancer. PTEN/MMAC1 was also identi®ed as the gene predisposing to Cowden disease, an autosomal dominant cancer predisposition syndrome associated with an increased risk of breast, skin and thyroid tumors and occasional cases of other cancers including bladder and renal cell carcinoma. We screened 345 urinary tract cancers by microsatellite analysis and found chromosome 10q to be deleted in 65 of 285 (23%) bladder and 15 of 60 (25%) renal cell cancers. We then screened the entire PTEN/MMAC1 coding region for mutation in 25 bladder and 15 renal cell primary tumors with deletion of chromosome 10q. Two somatic point mutations, a frameshift and a splicing variant, were found in the panel of bladder tumors while no mutation was observed in the renal cell carcinomas. To screen for homozygous deletion, we isolated two polymorphic microsatellite repeats from genomic BAC clones containing the PTEN/MMAC1 gene. Using these new informative markers, we identi®ed apparent retention at the gene locus indicative of homozygous deletion of PTEN/MMAC1 in four of 65 bladder and 0 of 15 renal cell tumors with LOH through chromosome 10q. Identi®cation of the second inactivation event in six bladder tumors with LOH of 10q implies that the PTEN/MMAC1 gene is occasionally involved in bladder tumorigenesis. However, the low frequency of biallelic inactivation suggests that either PTEN/MMAC1 is inactivated by other mechanisms or it is not the only target of chromosome 10q deletion in primary bladder and renal cell cancer.
The p53 gene was sequenced in 100 primary human lung cancers by using direct dideoxynucleotide cycle sequencing and compared with sequence analysis by using the p53 GeneChip assay. Differences in sequence analysis between the two techniques were further evaluated to determine the accuracy and limitations of each method. p53 mutations were either detected by using both techniques or, if only detected by one technique, were confirmed by using mutation-specific oligonucleotide hybridization. Dideoxynucleotide sequencing of the conserved regions of the p53 gene (exons 5-9) detected 76% of the mutations within this region of the gene. The GeneChip p53 assay detected 81% of all (exons 2-11) mutations, including 80% of the mutations within the conserved regions of the gene. The GeneChip assay detected 46 of 52 missense mutations (88%), but 0 of 5 frameshift mutations. The specificity of direct sequencing and of the p53 GeneChip assay at detecting p53 mutations were 100% and 98%, respectively. The GeneChip p53 assay is a rapid and reasonably accurate approach for detecting p53 mutations; however, neither direct sequencing nor the p53 GeneChip are infallible at p53 mutation detection.
The Sec1 family, a novel family of proteins involved in synaptic transmission and general secretion, is described. To date, 14 members of this family have been identified: four yeast proteins, Sec1, Sly1, Slp1/Vps33, and Vps45/Stt10; three nematode proteins, Unc‐18 and the homologues of Sly1 and Slp1; the Drosophila Rop; and six mammalian proteins, the rat Munc‐18/n‐Sec1/rbSec1A and rbSec1B, the mouse Munc‐18b/muSec1 and Munc‐18c, and the bovine Munc‐18 and mSec1. The mammalian proteins share 44–63% sequence identity with the nematode Unc‐18 and Drosophila Rop proteins and 20–29% with the yeast proteins and their nematode homologues. The Sec1 proteins are mostly hydrophilic and lack a transmembrane domain. Nevertheless, Sec1 proteins are found as membrane‐bound proteins. Some of them are also found as soluble, cytoplasmic proteins. Binding of the rat brain Sec1 to the presynaptic membrane may be due to strong interaction with syntaxin, an integral component of this membrane. The rat brain Sec1 is also bound to Cdk5, a neural cyclin‐dependent kinase. The Sec1 proteins play a positive role in exocytosis. Loss of function mutations in SEC1, SLY1, or SLP1 result in blocking of protein transport between distinct yeast subcellular compartments. Inactivation of unc‐18 and rop results in inhibition of neurotransmitter release and, in the case of rop, inhibition of general secretion as well. In addition, studies of Rop and n‐Sec1 indicate that they also play a negative role in synaptic transmission, mediated by their interaction with syntaxin. A working model addressing the dual regulative role of the Sec1 proteins in secretion is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.