Curdlan dissolved in alkaline solution forms a unique gel consisting of liquid crystalline gel (LCG) and amorphous gel (AG) in alternating layers by a dialysis into aqueous calcium chloride. The unique structure has been investigated by measuring the birefringence of the gel Deltan, the ratio q of the thickness of LCG layer delta to the gel radius R, and the calcium content in the gel C(Ca) in a wide range of molecular weights of fractionated Curdlan, as well as unfractionated Curdlan as a control. With increasing molecular weight of Curdlan, Deltan increased and q = delta/R decreased, and both became saturated at high molecular weight. Deltan and q for unfractionated Curdlan were smaller and larger, respectively, than those for fractionated Curdlan. C(Ca) was constant irrespective of molecular weight and its distribution, which means that the abundance of calcium ions per glucose unit in the gel does not depend on the degree of orientation of mesogens. These results suggest that the amorphous phase appears when the size of the Curdlan molecules is larger than the average intermolecular distance, resulting from the random coil to triple helix transformation of Curdlan molecules associated with lowering hydroxide anion concentration in the dialysis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.